Temporal evolution of black carbon (BC) in Nanjing was studied along with its main influencing factors. The multi-wavelength aethalometer (AE-33) was used to select the typical month of each season to observe BC mass concentration, combined with atmospheric pollutant data, meteorological elements, and boundary layer detection data. Seasonal, daily, weekly trends, and source characteristics of BC were analyzed. The results showed that the BC concentration in Nanjing had obvious seasonal changes, which were higher in spring and winter, in the decreasing order:spring[(3351±919) ng·m] > winter[(3234±2102) ng·m] > in autumn[(3064±967) ng·m] > summer[(2632±1705) ng·m]. The diurnal changes in BC during the four seasons are bimodal, with peaks at 06:00-08:00 and 21:00-23:00. The morning and evening peak distribution characteristics of BC in different seasons are different. The peak concentration of BC was highest in the early morning peak spring and the highest in the late peak winter. The morning peak timing of winter is 2 h behind other seasons, while the summer peak timing is 2 h ahead of other seasons. The effect of the wind speed on the seasonal distribution of BC diurnal variation is significantly larger than that on RH. The mechanism of the influence of the inversion layer on the concentration of atmospheric pollutants is complicated. The effects of height, thickness, and temperature of the inversion layer on the pollutants are different in different seasons. Weekly BC effects vary seasonally. The effect of RH and wind speed on the weekly BC effect is small, and the difference in the inversion layer is the main reason behind it. Liquid fuel combustion in Nanjing has a greater contribution to BC, whereas solid combustion contributes by a lesser extent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201905245 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
School of Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
In this study, we developed new chiral hybrid perovskites, (R/S-MBA)(GA)PbI, by incorporating achiral guanidinium (GA) and chiral R/S-methylbenzylammonium (R/S-MBA) into the perovskite framework. The resulting materials possess a distinctive structural configuration, positioned between 1D and 2D perovskites, which we describe as 1.5D.
View Article and Find Full Text PDFPLoS One
January 2025
Geosciences Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, KSA.
Estimating seismic anisotropy parameters, such as Thomson's parameters, is crucial for investigating fractured and finely layered geological media. However, many inversion methods rely on complex physical models with initial assumptions, leading to non-reproducible estimates and subjective fracture interpretation. To address these limitations, this study utilizes machine learning methods: support vector regression, extreme gradient boost, multi-layer perceptron, and a convolutional neural network.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea.
Two-dimensional (2D) organic-inorganic hybrid metal halides (OIMHs), characterized by noncentrosymmetric structures arising from the incorporation of chiral organic molecules that break inversion symmetry, have attracted significant attention. Particularly, chiral-polar 2D OIMHs offer a unique platform for multifunctional applications, as the coexistence of chirality and polarity enables the simultaneous manifestation of distinct properties such as nonlinear optical (NLO) effects, circular dichroism (CD), and ferroelectricity. In this study, we report the first synthesis of hafnium (Hf)-based chiral 2D OIMHs, achieved through the strategic incorporation of -substituents on the benzene ring of chiral organic components.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
Two-dimensional (2D) materials that exhibit spontaneous magnetization, polarization, or strain (referred to as ferroics) have the potential to revolutionize nanotechnology by enhancing the multifunctionality of nanoscale devices. However, multiferroic order is difficult to achieve, requiring complicated coupling between electron and spin degrees of freedom. We propose a universal method to engineer multiferroics from van der Waals magnets by taking advantage of the fact that changing the stacking between 2D layers can break inversion symmetry, resulting in ferroelectricity as well as magnetoelectric coupling.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
Bilayers of two-dimensional van der Waals materials that lack an inversion center can show a novel form of ferroelectricity, where certain stacking arrangements of the two layers lead to an interlayer polarization. Under an external out-of-plane electric field, a relative sliding between the two layers can occur, accompanied by an interlayer charge transfer and a ferroelectric switching. We show that the domain walls that mediate ferroelectric switching are a locus of strong attractive interactions between electrons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!