Huan Jing Ke Xue
Center for Ecological Research, Northeast Forestry University, Harbin 150040, China.
Published: April 2020
Soil enzymes participate in numerous complex biochemical processes that take place in the soil and play an important role in the material circulation of terrestrial ecosystems. To explore the response of soil enzyme activities and chemical properties to nitrogen deposition in temperate forests, this study analyzed four soil enzyme activities based on the nitrogen addition experiment plot of Korean pine () plantation, which was located in the Liangshui National Natural Reserve, Heilongjiang Province. The results showed that the activities of -acetyl-glucosidase (NAG) and alkaline phosphatase (AKP) increased significantly with increasing nitrogen application concentration. The activity of beta-glucosidase (BG) and acid phosphatase (ACP) was not significantly different among different nitrogen application treatments. The contents of total carbon, total nitrogen, total phosphorus, and available nitrogen and four enzyme activity in the upper soil (0-10 cm) under the same nitrogen application level were significantly higher than those in the lower soil (10-20 cm), but the pH values were not significantly different. Total carbon has an extremely significant positive correlation with NAG, BG, AKP, and ACP. Total nitrogen has an obvious or extremely significant positive correlation with BG, NAG, and AKP as well as ACP. The available nitrogen has an obvious and highly significant positive correlation with NAG and AKP. The total phosphorus has an obvious and extremely significant positive correlation with ACP and AKP, respectively. The nitrogen application level and the soil layer had different effects on soil enzyme activity and soil chemical properties. Long-term large input of nitrogen can directly or indirectly change soil chemical properties and affect soil enzyme activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201906168 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.