The excessive use and abuse of antibiotics has brought about serious threats to water environmental safety and human health. It is necessary to develop efficient, cheap, and environmentally friendly treatment technologies for antibiotics. In this work, a Ni-doped Sb-SnO microporous ceramic ring particle electrode was prepared by the dipping method and characterized by scanning electron microscopy, energy dispersion spectroscopy, and X-ray diffraction. The electrocatalytic oxidation ability and kinetic characteristics of sulfadiazine (SDZ) were studied using the prepared electrode, and the degradation pathways of SDZ were analyzed preliminarily. The results showed that Ni and Sb-SnO crystals were loaded on the particle electrode surface, which is beneficial for electron transfer and SDZ adsorption and improvement of electrocatalytic oxidation efficiency. Under the conditions of 0.02 mol·L NaCl solution (pH 8), 15 mA·cm of current density, and 15 g particle electrode, 50 mg·L SDZ could be completely removed on the three-dimensional electrode within 15 min. The removal efficiency of TOC in the reaction solution reached 80.8% for 3 h degradation and was 17.6% higher than that with two-dimensional electrode. The kinetic process of the electrocatalytic oxidation could be well described by the first-order reaction kinetic model, and the rate constant was 0.329 min. The degradation products of SDZ were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the possible pathways of electrocatalytic degradation mainly include the fractures of S-N bond on sulfamido and C-N bond on pyrimidine ring, desulfonation, deamination, and·OH oxidation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.201910110 | DOI Listing |
J Environ Manage
January 2025
Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran. Electronic address:
Cefixime (CFX) is a potent antibiotic against gram-positive and gram-negative bacteria that resists degradation and typical removal procedures. This research aimed to synthesize a modified AgCuFeO@GO nanoparticle electrode with anchored MnO for removing CFX by three-dimensional electrochemical oxidation. The physical and chemical characteristics of the nanocomposite were evaluated using various techniques, including FESEM, XRD, EDS-mapping, FTIR, BET, VSM, and TGA.
View Article and Find Full Text PDFACS Nano
January 2025
Graduate Institute of Ferrous & Eco Materials Technology (GIFT), Pohang University of Science and Technology University, Pohang 37666, Republic of Korea.
Lattice volume changes in Li-ion batteries active materials are unavoidable during electrochemical cycling, posing significant engineering challenges from the particle to the electrode level. In this study, we present an elastic framework coating designed to absorb and reversibly release strain energy associated with particle volume changes, thereby enhancing mechanical resilience at both the particle and electrode levels. This framework, composed of multiwalled carbon nanotubes (MWCNTs), is applied to nickel-rich LiNiCoMnO (NCM9055) cathodes at a low loading of 0.
View Article and Find Full Text PDFACS Nano
January 2025
Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
SiO-based anodes, considered the most promising candidate for high-energy density batteries, have long been bothered by mechanical integrity issues. Research efforts focus on particle modifications, often overlooking the enhancement of interparticle connections, which can reduce the active material content within the electrode. Herein, an integrated electrode with strong covalent bonding at the electrode scale is designed, achieving excellent mechanical stability with ∼95 wt.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States.
Colloids can be used either as model systems for directed assembly or as the necessary building blocks for making functional materials. Previous work primarily focused on assembling colloids under a single external field, where controlling particle-particle interactions is limited. This work presents results under a combination of electric and magnetic fields.
View Article and Find Full Text PDFMater Horiz
January 2025
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!