Lung macrophages (LMs) are key immune effector cells that protect the lung from inhaled particulate matter, noxious gases and pathogens. In Chronic Obstructive Pulmonary Disease (COPD), there is an abundance of macrophages in airspaces and lung tissues suggesting that they play an important role in the pathogenesis of the disease. Furthermore, macrophage phenotype and functional properties are altered in COPD toward a more pro-inflammatory state, characterized by reduced pathogen recognition and processing ability and dysfunctional tissue repair qualities. Inhaled corticosteroids (ICSs), used in the management of COPD, has been shown to reduce acute exacerbations of COPD but is also associated with increased occurrence of pneumonia. Corticosteroids treatment altered LM phenotypic characteristics and their functional properties, and this commentary discusses current knowledge and also the gaps in our understanding of the impact of ICS on LMs phenotype and function. A better understanding of how ICSs impact the immune-inflammatory responses in the lung, in particular ICSs' effects on LMs, could allow more selective personalized tailoring of the use of ICSs in COPD to improve disease progression, morbidity and mortality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7330501 | PMC |
http://dx.doi.org/10.1042/CS20200382 | DOI Listing |
Curr Rheumatol Rep
December 2024
Department of Medicine, Division of Rheumatology, Queen's University, Kingston, ON, Canada.
Purpose Of Review: The canonical pathogenesis of spondyloarthritis (SpA) involves inflammation driven by HLA-B27, type 3 immunity, and gut microbial dysregulation. This review based on information presented at the SPARTAN meeting highlights studies on the pathogenesis of SpA from the past year, focusing on emerging mechanisms such as the roles of microbe-derived metabolites, microRNAs (miRNAs) and cytokines in plasma exosomes, specific T cell subsets, and neutrophils.
Recent Findings: The induction of arthritis in a preclinical model through microbiota-driven alterations in tryptophan catabolism provides new insights as to how intestinal dysbiosis may activate disease via the gut-joint axis.
J Neuroinflammation
December 2024
Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
The immune system has garnered attention due to its association with disease progression in amyotrophic lateral sclerosis (ALS). However, the role of peripheral immune cells in this context remains controversial. Here, we conducted single-cell RNA-sequencing of peripheral blood mononuclear cells to comprehensively profile immune cells concerning the rate of disease progression in patients with ALS.
View Article and Find Full Text PDFImmun Ageing
December 2024
Université Paris Cité, INSERM, PARCC, Paris, France.
Background: Immune ageing complicates cancer treatment in older individuals. While immunotherapy targeting the PD-1/PD-L1 pathway can reinvigorate T cells, these cells tend to become senescent with age. This study investigates different CD8 T cell subsets usually associated with senescence, in cancer patients over 70 years old who are undergoing anti-PD-1/PD-L1 immunotherapy, and examines the relationship between these senescent cells and prior chemotherapy exposure.
View Article and Find Full Text PDFSci Rep
December 2024
Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore.
Long-term control of viral replication relies on the efficient differentiation of memory T cells into effector T cells during secondary immune responses. Recent findings have identified T cell precursors for both memory and exhausted T cells, suggesting the existence of progenitor-like effector T cells. These cells can persist without antigenic challenge but expand and acquire effector functions upon recall immune responses.
View Article and Find Full Text PDFTrends Biochem Sci
December 2024
Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. Electronic address:
Necroptosis is a mode of programmed cell death executed by the mixed lineage kinase domain-like (MLKL) pseudokinase following its activation by the upstream receptor-interacting protein kinase-3 (RIPK3), subsequent to activation of death, Toll-like, and pathogen receptors. The pathway originates in innate immunity, although interest has surged in therapeutically targeting necroptosis owing to its dysregulation in inflammatory diseases. Here, we explore how protein conformation and higher order assembly of the pathway effectors - Z-DNA-binding protein-1 (ZBP1), RIPK1, RIPK3, and MLKL - can be modulated by post-translational modifications, such as phosphorylation, ubiquitylation, and lipidation, and intermolecular interactions to tune activities and modulate necroptotic signaling flux.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!