Unhealthy weight gain relates, in part, to how people make decisions based on prior experience. Here we conducted post hoc analysis on an archival data set to evaluate whether individual differences in adiposity, an anthropometric construct encompassing a spectrum of body types, from lean to obese, associate with signatures of asymmetric feedback learning during value-based decision-making. In a sample of neurologically healthy adults (N = 433), ventral striatal responses to rewards, measured using fMRI, were not directly associated with adiposity, but rather moderated its relationship with feedback-driven learning in the Iowa gambling task, tested outside the scanner. Using a biologically inspired model of basal ganglia-dependent decision processes, we found this moderating effect of reward reactivity to be explained by an asymmetrical use of feedback to drive learning; that is, with more plasticity for gains than for losses, stronger reward reactivity leads to decisions that minimize exploration for maximizing long-term outcomes. Follow-up analysis confirmed that individual differences in adiposity correlated with signatures of asymmetric use of feedback cues during learning, suggesting that reward reactivity may especially relate to adiposity, and possibly obesity risk, when gains impact future decisions more than losses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7657458PMC
http://dx.doi.org/10.1093/scan/nsaa088DOI Listing

Publication Analysis

Top Keywords

signatures asymmetric
12
asymmetric feedback
12
reward reactivity
12
feedback learning
8
individual differences
8
differences adiposity
8
adiposity
5
learning
5
adiposity covaries
4
covaries signatures
4

Similar Publications

Inherent asymmetry of Rpd3S coordinates its nucleosome engagement and association with elongating RNA polymerase II.

Nat Struct Mol Biol

January 2025

Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

The Rpd3S histone deacetylase complex has a crucial role in genomic integrity by deacetylating transcribed nucleosomes following RNA polymerase (Pol) II passage. Cryo-EM studies highlight the importance of asymmetrical Rco1-Eaf3 dimers in nucleosome binding, yet the interaction dynamics with nucleosomal substrates alongside elongating Pol II are poorly understood. Here we demonstrate the essential function of the Rco1 N-terminal intrinsically disordered region (IDR) in modulating Pol II association, in which K/R mutations within the Rco1 IDR impair interaction of Rpd3S with the C-terminal domain (CTD) of Rpb1, without affecting nucleosome recognition or complex integrity.

View Article and Find Full Text PDF

Single-Cell RNA Sequencing Reveals the Developmental Landscape of Wheat Roots.

Plant Cell Environ

January 2025

State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.

Allohexaploid wheat (Triticum aestivum L.) is one of the major crops worldwide, however there is very limited research on the transcriptional programmes of underlying cell type specification. Single-cell RNA sequencing (scRNA-seq) was used to unravel the transcriptome heterogeneity of cells and the composition of cell types in broad-spectrum organisms.

View Article and Find Full Text PDF

Sequence of the SARS-CoV-2 Spike Transmembrane Domain Encodes Conformational Dynamics.

J Phys Chem B

January 2025

Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.

The homotrimeric SARS-CoV-2 spike protein enables viral infection by undergoing a large conformational transition, which facilitates the fusion of the viral envelope with the host cell membrane. The spike protein is anchored to the SARS-CoV-2 envelope by its transmembrane domain (TMD), composed of three TM helices, each contributed by one of the protomers of spike. Although the TMD is known to be important for viral fusion, whether it is a passive anchor of the spike or actively promotes fusion remains unknown.

View Article and Find Full Text PDF

A recombinant L-threonine aldolase with high catalytic efficiency for the asymmetric synthesis of L-threo-phenylserine and L-threo-4-fluorophenylserine.

Biotechnol Lett

December 2024

Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.

Objectives: To develop robust variants of L-threonine aldolases (L-TAs), potent catalysts for synthesizing asymmetric β-hydroxy-α-amino acids, it is necessary to identify critical residues beyond the known active site residues.

Results: Through virtual screening, a neglected residue Asn305, was identified as critical for catalytic efficiency. Subsequent site-saturation mutagenesis led to a potent variant N305R which exhibited excellent conversions of 88% (87%) and 80% (94%) for the synthesis of L-threo-phenylserine and L-threo-4-fluorophenylserine respectively.

View Article and Find Full Text PDF

Structural basis of orientated asymmetry in a mGlu heterodimer.

Nat Commun

November 2024

Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.

Article Synopsis
  • The study investigates the structural basis of allosteric interactions in heterodimeric G protein-coupled receptors (GPCRs), specifically focusing on metabotropic glutamate (mGlu) receptors, which are crucial for synaptic regulation.
  • Researchers utilized cryo-electron microscopy to reveal four distinct structures of the mGlu2-4 heterodimer, showcasing different activation states, including inactive, intermediate, and active forms.
  • Findings indicate that agonist binding to just one subunit isn't enough for full activation of the dimer, highlighting the asymmetric nature of mGlu receptor activation, where only mGlu4 activates G proteins.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!