Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Density functional theory calculations are employed to explore the reactivity of metalla-N-heterocyclic carbenes (MNHCs) towards activation of a variety of small molecules (H2, NH3, PH3, SiH3Ph and CH4). All the MNHCs considered are found to have a stable singlet ground state and possess suitable electronic properties for their application in small molecule activation. The calculated energy barriers of E-H (E = H, C, N, Si, P) activation for the MNHCs are found to be in agreement with those of the experimentally evaluated cyclic alkyl(amino)carbene (CAAC) and diamidocarbenes (DACs), thereby indicating the activating effect of the incorporation of an ancillary metal center within a cyclic NHC, and highlighting a new, underexplored strategy in achieving difficult bond activations with carbenes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0dt01363c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!