Regeneration of skeletal muscle after volumetric injury is thought to be impaired by a dysregulated immune microenvironment that hinders endogenous repair mechanisms. Such defects result in fatty infiltration, tissue scarring, chronic inflammation, and debilitating functional deficits. Here, we evaluated the key cellular processes driving dysregulation in the injury niche through localized modulation of sphingosine-1-phosphate (S1P) receptor signaling. We employ dimensionality reduction and pseudotime analysis on single cell cytometry data to reveal heterogeneous immune cell subsets infiltrating preclinical muscle defects due to S1P receptor inhibition. We show that global knockout of S1P receptor 3 (S1PR3) is marked by an increase of muscle stem cells within injured tissue, a reduction in classically activated relative to alternatively activated macrophages, and increased bridging of regenerating myofibers across the defect. We found that local S1PR3 antagonism via nanofiber delivery of VPC01091 replicated key features of pseudotime immune cell recruitment dynamics and enhanced regeneration characteristic of global S1PR3 knockout. Our results indicate that local S1P receptor modulation may provide an effective immunotherapy for promoting a proreparative environment leading to improved regeneration following muscle injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7772280PMC
http://dx.doi.org/10.1002/jbm.a.37053DOI Listing

Publication Analysis

Top Keywords

s1p receptor
20
local s1p
8
receptor signaling
8
immune cell
8
s1p
5
receptor
5
muscle
5
modulating local
4
signaling regenerative
4
regenerative immunotherapy
4

Similar Publications

Targeting the tumor immune microenvironment: GPCRs as key regulators in triple-negative breast cancer.

Int Immunopharmacol

December 2024

Department of Biochemistry and Molecular Biology, Jining Medical University, Jining, China. Electronic address:

Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its aggressive nature and limited therapeutic options. Recent research underscores the pivotal role of G protein-coupled receptors (GPCRs) in shaping the tumor immune microenvironment (TIME) within TNBC. This review focuses on four principal GPCRs-chemokine receptors, sphingosine-1-phosphate receptors, prostaglandin E2 receptors, and lactate receptors-that have garnered substantial attention in TNBC studies.

View Article and Find Full Text PDF

Differential Efficacy of Advanced Therapies in Inducing Remission in Ulcerative Colitis Based on Prior Exposure to TNF Antagonists.

Clin Gastroenterol Hepatol

December 2024

Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, California, USA; Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, California, USA. Electronic address:

Background And Aims: We sought to ascertain how prior exposure to TNF antagonists impacts treatment response with various classes of advanced therapies in patients with ulcerative colitis (UC), through a systematic review and meta-analysis.

Methods: Through a systematic review of multiple databases through June 30, 2024, we identified 17 RCTs in 8871 adults with moderate-severe UC who were treated with different advanced therapies vs. placebo, and reported efficacy in induction of clinical remission, stratified by prior exposure to TNF antagonists.

View Article and Find Full Text PDF

Whole blood concentrations of fingolimod and its pharmacologically active metabolite fingolimod phosphate obtained during routine health care of patients with multiple sclerosis.

Mult Scler Relat Disord

December 2024

Department of Clinical Pharmacology, Faculty of Medicine, University of Ostrava; Department of Clinical Pharmacology, Institute of Laboratory Medicine, University Hospital Ostrava, Czech Republic.

Background: Fingolimod is a first-in-class, orally administered drug indicated for the treatment of relapsing-remitting multiple sclerosis. It acts as an immunomodulator, is classified as a "disease-modifying therapy", and its main mechanism of action is the modulation of sphingosine-1-phosphate receptors. In this prospective pilot study, whole blood concentrations of fingolimod and fingolimod phosphate obtained during routine health care were measured.

View Article and Find Full Text PDF

Epilepsy is one of the common chronic neurological diseases, affecting more than 70 million people worldwide. The brains of people with epilepsy exhibit a pathological and persistent propensity for recurrent seizures. Epilepsy often coexists with cardiovascular disease, cognitive dysfunction, depression, etc.

View Article and Find Full Text PDF

Sex-dependent efficacy of sphingosine-1-phosphate receptor agonist FTY720 in mitigating Huntington's disease.

Pharmacol Res

December 2024

Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo N-0372, Norway; Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, Lübeck D-23538, Germany; Department of Neuromedicine and Neuroscience, Faculty of Medicine and Life Sciences, University of Latvia (LU), Jelgavas iela 3, Rīga LV-1004, Latvia; Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Ramat Aviv IL-6997801, Israel. Electronic address:

Huntington's disease (HD) is a debilitating neurodegenerative disorder characterized by severe motor deficits, cognitive decline and psychiatric disturbances. An early and significant morphological hallmark of HD is the activation of astrocytes triggered by mutant huntingtin, leading to the release of inflammatory mediators. Fingolimod (FTY), an FDA-approved sphingosine-1-phosphate (S1P) receptor agonist is used to treat multiple sclerosis (MS), a neuroinflammatory disease, and has shown therapeutic promise in other neurological conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!