The characterization of ice-binding proteins (IBPs) from plants can involve many techniques, a few of which are presented here. Chief among these methods are tests for ice recrystallization inhibition, an activity characteristic of plant IBPs. Two related procedures are described, both of which can be used to demonstrate and quantify ice-binding activity. First, is the traditional "splat" assay, which can easily be set up using common laboratory equipment, and second, is our modification of this method using superhydrophobic coated sapphire for analysis of multiple samples in tandem. Thermal hysteresis is described as another method for quantifying ice-binding activity, during which ice crystal morphology observations can be used to provide clues about ice-plane binding. Once ice-binding activity has been evaluated, it is necessary to verify IBP identity. We detail two methods for enriching IBPs from complex mixtures using ice-affinity purification, the "ice-finger" and "ice-shell" methods, and we highlight their advantages and limitations for the isolation of plant IBPs. Recombinant IBP expression, necessary for detailed ice-binding analysis, can present challenges. Here, a strategy for recovery of soluble, active protein is described. Lastly, verification of function in planta borrows from standard protocols, but with an additional screen applicable to IBPs. Together, these methods, and a few considerations critical to success, can be used to assist researchers wishing to isolate and characterize IBPs from plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-0660-5_21 | DOI Listing |
Langmuir
January 2025
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
The antifreeze mechanism of antifreeze glycoproteins (AFGPs) remains incompletely understood, which limits the design of new antifreeze molecules for practical applications. For instance, the ice growth inhibition of AFGP8 (the shortest AFGPs) is primarily driven by hydrophobic methyl and hydrogen-bonding hydroxyl groups. However, altering the C3-β linkage in the disaccharide moiety of AFGP8, denoted as variant GP8-LacNAc, significantly reduces its antifreeze activity.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P.R.China.
This study aims to explore the cryoprotective mechanisms of food-derived hydrolyzed peptides and develop novel cryoprotectants to enhance the quality of frozen foods. scale antifreeze peptides (Ej-AFP) were prepared using enzymatic hydrolysis, which had a 4-fold increase in protection efficiency for surimi compared to traditional cryoprotectants. Furthermore, Ej-AFP was able to control 63.
View Article and Find Full Text PDFFood Chem
December 2024
Department of Food Science, The University of Tennessee, Knoxville (UTK), TN 37996, United States. Electronic address:
The glycomacropeptide (GMP) present in the cheese whey byproduct can be an excellent antifreezing agent due to its unique molecular structure. The objective of this study was to concentrate this peptide and investigate its ice recrystallization inhibition (IRI) ability. Heat denaturation of the non-GMP proteins and preparative liquid chromatography were used to create fraction 1 (F1) and fraction 2 (F2) and these were tested using the splat assay and a modified sucrose sandwich assay to investigate their IRI activity.
View Article and Find Full Text PDFBiomacromolecules
January 2025
DISFARM, Department of Pharmaceutical Sciences, "A. Marchesini" General and Organic Chemistry Section, Università degli Studi di Milano, Via Venezian 21, Milan 20133, Italy.
In nature, organisms living in extreme environmental conditions produce antifreeze proteins (AFPs) that prevent the growth of ice crystals and depress the freezing point of body fluids. In this study, three different peptides derived from the N-terminal sequence of the helical type I AFP HPLC6, along with a stapled derivative produced via on-resin microwave-assisted copper(I)-catalyzed azide-alkyne cycloaddition, were conjugated to gold nanoparticles. The aim of decorating the surface of the nanoparticles with multiple copies of the peptides was to combine the ice-binding capability of the peptides with the size of a nanoparticle, thus, mimicking the protein bulkiness to enhance the peptide antifreeze activity.
View Article and Find Full Text PDFExtremophiles
December 2024
School of Life Sciences, University of Nevada Las Vegas, Las Vegas, USA.
Among the many ice-binding proteins (IBPs) found in microorganisms (bacteria, archaea, fungi and algae), the canonical DUF3494 beta-barrel type is the most common. Until now, little variation has been found in this structure: an initial coil leads into an alpha helix that directs the following coils into a reverse stack, with the final coil ending up next to the initial coil. Here, I show that there exist many bacterial proteins whose AlphaFold-predicted structures deviate from the DUF3494 structure so that they are not recognized as belonging to an existing DUF or Pfam family.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!