To investigate the effects of dexmedetomidine on chronic constriction injury (CCI)-induced neuropathic pain and to further explore its mechanism. A CCI rat model was established and treatment with dexmedetomidine. The paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) were monitored at different time points, and the effects of hematoxylin-eosin staining on the sciatic nerve morphology of rats were observed. Immunohistochemical and immunofluorescence analyses were used to detect the expression of high mobility group box-1 (HMGB1) protein and glial fibrillary acidic protein (GFAP), and protein fluorescence intensity of GFAP in spinal cord tissue, respectively. Moreover, the expression of HMGB1 and Toll-like receptor-4/nuclear factor kappa-B (TLR4/NF-κB) pathway-related proteins were detected by western blot assay. To verify whether dexmedetomidine alleviates CCI-induced neuropathic pain by inhibiting HMGB1-mediated astrocyte activation and the TLR4/NF-κB signaling pathway, the rats were further treated with an HMGB1 activator or antagonist. Dexmedetomidine was found to improve the pathological changes of the sciatic nerve and alleviate pain in the CCI rats. The expression of HMGB1, GFAP, TLR4, TRAF6, MyD88, and p-P65 were greatly downregulated in the spinal cord tissues of the CCI rats. In addition, a further study showed that an HMGB1 activator can reverse the inhibition of neuropathic pain behaviors of dexmedetomidine. Overexpression of HMGB1 downregulated the PWMT and PWTL and enhanced the astrocyte activity and the TLR4/NF-κB signaling pathway in CCI rats. These results indicated that dexmedetomidine can alleviate neuropathic pain in CCI rats by inhibiting HMGB1-mediated astrocyte activation and the TLR4/NF-κB signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12640-020-00245-6DOI Listing

Publication Analysis

Top Keywords

neuropathic pain
20
tlr4/nf-κb signaling
16
signaling pathway
16
cci rats
16
cci-induced neuropathic
12
inhibiting hmgb1-mediated
12
hmgb1-mediated astrocyte
12
astrocyte activation
12
activation tlr4/nf-κb
12
dexmedetomidine alleviates
8

Similar Publications

Local delivery of mesenchymal stem cell-extruded nanovesicles through a bio-responsive scaffold for acute spinal cord injury treatment.

Int J Pharm

January 2025

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321002, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China. Electronic address:

Intense inflammatory responses and elevated levels of reactive oxygen species (ROS) extremely exacerbate the pathological process of spinal cord injury (SCI). Mesenchymal stem cell (MSC)-derived extracellular vesicles (EV) can mitigate SCI-related inflammation but their production yield remains limited. Alternatively, MSC-extruded nanovesicles (NV) inherit the therapeutic potential from MSCs and have a markedly higher yield than EV.

View Article and Find Full Text PDF

Nociplastic pain among individuals with chronic ocular surface pain: one cause for "pain without stain"?

Surv Ophthalmol

January 2025

Michigan Medicine, Department of Ophthalmology and Visual Sciences, Ann Arbor, MI, USA.

Chronic ocular surface pain (COSP) refers to interrelated symptoms such as eye burning, aching, and irritation and can occur as an isolated condition or comorbid with numerous ocular disorders, including dry eye syndrome Treatments for COSP are largely aimed at the ocular surface and modulating pain arising from damaged corneal nerves; however, the average impact of these treatments on COSP are low to absent. A potential explanation for this is that in a subset of patients with COSP, individuals have amplified and/or dysregulated neural signaling and sensory processing within the central nervous system (CNS). As in other chronic pain conditions, this might be the pathogenic mechanism primarily responsible for maintaining pain - a phenomenon now referred to as nociplastic pain.

View Article and Find Full Text PDF

Female genital prolapse, especially apical prolapse, significantly affects women's health and quality of life. Sacrospinous hysteropexy is a widely used surgical procedure to address this condition, presenting few postoperative complications. However, one of the reported complications is neuropathic pain resulting from damage to the branches of the pudendal nerve.

View Article and Find Full Text PDF

Opioidergic activation of the descending pain inhibitory system underlies placebo analgesia.

Sci Adv

January 2025

Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.

Placebo analgesia is caused by inactive treatment, implicating endogenous brain function involvement. However, the neurobiological basis remains unclear. In this study, we found that μ-opioid signals in the medial prefrontal cortex (mPFC) activate the descending pain inhibitory system to initiate placebo analgesia in neuropathic pain rats.

View Article and Find Full Text PDF

The use of antidepressant medications in the treatment of lichen simplex chronicus (LSC) also known as neurodermatitis, is not well-documented in the literature. The primary aim of our study is to evaluate the impact of duloxetine 30 mg on the quality of life in patients with LSC, focusing on both pruritus and psychopathological aspects. The secondary aim is to investigate the relationship between LSC and anxiety and depression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!