Endothelial cells (EC) contribute to the control of local vascular diameter by formation of an endothelium derived relaxant factor (EDRF) (1). Whether nitric oxide (NO) is identical with (EDRF) or might represent only one species of several EDRFs has not been decided as yet (2-5). Therefore, we have directly compared in cultured EC the kinetics of NO formation determined in a photometric assay with the vasodilatory effect of EDRF and NO in a bioassay. Basal release of NO was 16, 4 pmol/min/ml packed EC column. After stimulation with bradykinin (BK) and ATP onset of endothelial NO release and maximal response preceded the EDRF-mediated relaxation. Concentrations of NO formed by stimulated EC were quantitatively sufficient to fully explain the smooth muscle relaxation determined in the bioassay. Our data provide convincing evidence that under basal, BK and ATP-stimulated conditions 1. endothelial cells release nitric oxide as free radical, 2. nitric oxide is solely responsible for the vasodilatory properties of EDRF.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-291x(88)90675-4DOI Listing

Publication Analysis

Top Keywords

nitric oxide
16
endothelial cells
12
edrf
5
quantitative kinetic
4
kinetic characterization
4
nitric
4
characterization nitric
4
oxide
4
oxide edrf
4
edrf released
4

Similar Publications

Muscarinic acetylcholine receptor 3 localized to primary endothelial cilia regulates blood pressure and cognition.

Sci Rep

January 2025

Department of Pharmacology and Experimental Therapeutics; MS 1015, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Education Building; Room 282E, 3000 Arlington Ave, Toledo, OH, 43614, USA.

We previously demonstrated that the inability of primary endothelial cilia to sense fluid shear stress can lead to nitric oxide (NO) deficiency and cause hypertension (HTN). Decreased biosynthesis of NO contributes to cerebral amyloid angiopathy in Alzheimer's disease (AD) patients through increased deposition of amyloid beta (Aβ). However, the molecular mechanisms underlying the pathogenesis of HTN and AD are incompletely understood.

View Article and Find Full Text PDF

Background: Monovalent biologics blocking thymic stromal lymphopoietin or interleukin-13 have been shown to elicit pharmacodynamic responses in asthma following a single dose. Therefore, dual blockade of these cytokines may result in an enhanced response compared to single targeting and has the potential to break efficacy ceilings in asthma. This study assessed the safety and tolerability of lunsekimig, a bispecific NANOBODY molecule that blocks thymic stromal lymphopoietin and interleukin-13, and its effect on Type 2 inflammatory biomarkers and lung function in asthma.

View Article and Find Full Text PDF

This Month in JAAD International: April 2025: Options of molluscum contagiosum management.

J Am Acad Dermatol

January 2025

From the Department of Dermatology, Center for Global Health, and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania and Florida Center for Dermatology, St Augustine, Florida. Electronic address:

View Article and Find Full Text PDF

Innate immune function in chronic rhinosinusitis.

J Allergy Clin Immunol

January 2025

Division of Rhinology, Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine; Monell Chemical Senses Center, Philadelphia; PA; Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA. Electronic address:

View Article and Find Full Text PDF

Combating sepsis-induced acute lung injury: PARP1 inhibition mediates oxidative stress mitigation and miR-135a-5p/SMAD5/Nanog axis drives regeneration.

Int Immunopharmacol

January 2025

Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India. Electronic address:

Purpose: The purpose of this study was to investigate the therapeutic potential of Poly (ADP-ribose) polymerase 1 (PARP1) inhibition combined with microRNA miR-135a-5p overexpression in sepsis-induced acute lung injury (ALI). Specifically, we aimed to elucidate combinatorial therapeutic potential of PARP1 inhibition in mitigating oxidative stress and inflammation across different models, simultaneously miR-135a-5p overexpression promoting regeneration through the SMAD5/Nanog axis.

Method: We used C57BL/6 mice to create Cecal Ligation Puncture (CLP) model of Sepsis-induced Acute Lung Injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!