A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sensitivity of comorbidity network analysis. | LitMetric

Sensitivity of comorbidity network analysis.

JAMIA Open

Center for Quantitative Medicine, UConn Health, 263 Farmington Ave, Farmington, Connecticut 06030-6033, USA.

Published: April 2020

Objectives: Comorbidity network analysis (CNA) is a graph-theoretic approach to systems medicine based on associations revealed from disease co-occurrence data. Researchers have used CNA to explore epidemiological patterns, differentiate populations, characterize disorders, and more; but these techniques have not been comprehensively evaluated. Our objectives were to assess the stability of common CNA techniques.

Materials And Methods: We obtained seven co-occurrence data sets, most from previous CNAs, coded using several ontologies. We constructed comorbidity networks under various modeling procedures and calculated summary statistics and centrality rankings. We used regression, ordination, and rank correlation to assess these properties' sensitivity to the source of data and construction parameters.

Results: Most summary statistics were robust to variation in link determination but somewhere sensitive to the association measure. Some more effectively than others discriminated among networks constructed from different data sets. Centrality rankings, especially among hubs, were somewhat sensitive to link determination and highly sensitive to ontology. As multivariate models incorporated additional effects, comorbid associations among low-prevalence disorders weakened while those between high-prevalence disorders shifted negative.

Discussion: Pairwise CNA techniques are generally robust, but some analyses are highly sensitive to certain parameters. Multivariate approaches expose additional conceptual and technical limitations to the usual pairwise approach.

Conclusion: We conclude with a set of recommendations we believe will help CNA researchers improve the robustness of results and the potential of follow-up research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309234PMC
http://dx.doi.org/10.1093/jamiaopen/ooz067DOI Listing

Publication Analysis

Top Keywords

comorbidity network
8
network analysis
8
co-occurrence data
8
data sets
8
summary statistics
8
centrality rankings
8
link determination
8
highly sensitive
8
cna
5
sensitivity comorbidity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!