A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of data dictionary for neonatal intensive care unit: advancement towards a better critical care unit. | LitMetric

Background: Critical care units (CCUs) with extensive use of various monitoring devices generate massive data. To utilize the valuable information of these devices; data are collected and stored using systems like clinical information system and laboratory information management system. These systems are proprietary, allow limited access to their database and, have the vendor-specific clinical implementation. In this study, we focus on developing an open-source web-based meta-data repository for CCU representing stay of the patient with relevant details.

Methods: After developing the web-based open-source repository named data dictionary (DD), we analyzed prospective data from 2 sites for 4 months for data quality dimensions (completeness, timeliness, validity, accuracy, and consistency), morbidity, and clinical outcomes. We used a regression model to highlight the significance of practice variations linked with various quality indicators.

Results: DD with 1555 fields (89.6% categorical and 11.4% text fields) is presented to cover the clinical workflow of a CCU. The overall quality of 1795 patient days data with respect to standard quality dimensions is 87%. The data exhibit 88% completeness, 97% accuracy, 91% timeliness, and 94% validity in terms of representing CCU processes. The data scores only 67% in terms of consistency. Furthermore, quality indicators and practice variations are strongly correlated ( < 0.05).

Conclusion: This study documents DD for standardized data collection in CCU. DD provides robust data and insights for audit purposes and pathways for CCU to target practice improvements leading to specific quality improvements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7309238PMC
http://dx.doi.org/10.1093/jamiaopen/ooz064DOI Listing

Publication Analysis

Top Keywords

data dictionary
8
care unit
8
critical care
8
data
8
quality dimensions
8
practice variations
8
quality
5
development data
4
dictionary neonatal
4
neonatal intensive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!