Background: () is a respiratory pathogen of swine and the etiological agent of Glässer's disease. The structural organization of genetic information, antibiotic resistance genes, potential pathogenicity, and evolutionary relationships among global strains remain unclear. The aim of this study was to better understand patterns of genetic variation, antibiotic resistance factors, and virulence mechanisms of this pathogen.
Methods: The whole-genome sequence of a ST328 isolate from diseased swine in China was determined using Pacbio RS II and Illumina MiSeq platforms and compared with 54 isolates from China sequenced in this study and 39 strains from China and eigtht other countries sequenced by previously. Patterns of genetic variation, antibiotic resistance, and virulence mechanisms were investigated in relation to the phylogeny of the isolates. Electrotransformation experiments were performed to confirm the ability of pYL1-a plasmid observed in ST328-to confer antibiotic resistance.
Results: The ST328 genome contained a novel Tn transposon harbouring a unique resistance determinant. It also contained a small broad-host-range plasmid pYL1 carrying and ; when transferred to RN4220 by electroporation, this plasmid was highly stable under kanamycin selection. Most (85.13-91.74%) of the genetic variation between isolates was observed in the accessory genomes. Phylogenetic analysis revealed two major subgroups distinguished by country of origin, serotype, and multilocus sequence type (MLST). Novel virulence factors ( and ) and drug resistance genes (, and ) in were identified Resistance determinants (, and ) were widespread across isolates, regardless of serovar, isolation source, or geographical location.
Conclusions: Our comparative genomic analysis of worldwide isolates provides valuable insight into the emergence and transmission of in the swine industry. The result suggests the importance of transposon-related and/or plasmid-related gene variations in the evolution of .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7316082 | PMC |
http://dx.doi.org/10.7717/peerj.9293 | DOI Listing |
Microb Cell Fact
January 2025
Microbiology and Immunology Department, Faculty of Medicine, Sohag University, Sohag, Egypt.
Background: The healthcare sector faces a growing threat from the rise of highly resistant microorganisms, particularly Methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDR P. aeruginosa). Facing the challenge of antibiotic resistance, nanoparticles have surfaced as promising substitutes for antimicrobial therapy.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Water Sciences, Beijing Normal University, Beijing 100875, China. Electronic address:
Urban rivers are the main water bodies humans frequently come into contact with, so the risks posed are closely monitored. Antibiotic resistance genes (ARGs) residues in reclaimed water pose serious risks to human health. There are urgent needs to improve the understanding of distribution of and risks posed by ARGs in urban rivers.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China. Electronic address:
The global issue of insecticide resistance among pests is a major concern. Ectropis grisescens Warren (Lepidoptera: Geometridae), is a highly destructive leaf-eating pest distributed in tea plantations throughout China and Japan, and has exhibited resistance to various insecticides. Recent studies suggest that insect symbionts play a role in influencing insecticide resistance, however, their specific involvement in E.
View Article and Find Full Text PDFWater Res
January 2025
Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin University, Changchun 130021, Jilin, PR China; Chongqing Research Institute, Jilin University, 401120 Chongqing, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, Jilin, PR China. Electronic address:
Efficient nutrient recovery from source-separated urine is vital for wastewater treatment, with microalgae as a promising solution. However, bisphenol A (BPA) in urine can hinder microalgal resource recovery and pose water quality risks. The role of plant hormones in enhancing microalgal growth and pollutant removal is known, but their impact on BPA-laden urine treatment is not well-studied.
View Article and Find Full Text PDFPoult Sci
January 2025
Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, PR China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, PR China. Electronic address:
Avian pathogenic Escherichia coli (APEC) is a major threat to the poultry industry, causing bloodstream and extraintestinal infections. Type II toxin-antitoxin (TA) systems are known to aid bacterial pathogens in adapting to stress, promoting persister cell formation, and enhancing virulence. While type II TA systems have been extensively studied in many pathogens, APEC-derived TAs have received limited attention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!