Theory predicts that organism-environment feedbacks play a central role in how ecological communities respond to environmental change. Strong feedback causes greater nonlinearity between environmental change and ecosystem state, increases the likelihood of hysteresis in response to environmental change, and augments the possibility of alternative stable regimes. To illustrate these predictions and their dependence on a temporal scale, we simulated a minimal ecosystem model. To test the predictions, we manipulated the feedback strength between the metabolism and the dissolved oxygen concentration in an aquatic heterotrophic tri-trophic community in microecosystems. The manipulation consisted of five levels, ranging from low to high feedback strength by altering the oxygen diffusivity: free gas exchange between the microcosm atmosphere and the external air (metabolism not strongly affecting environmental oxygen), with the regular addition of 200, 100, or 50 ml of air and no gas exchange. To test for nonlinearity and hysteresis in response to environmental change, all microecosystems experienced a gradual temperature increase from 15 to 25°C and then back to 15°C. We regularly measured the dissolved oxygen concentration, total biomass, and species abundance. Nonlinearity and hysteresis were higher in treatments with stronger organism-environment feedbacks. There was no evidence that stronger feedback increased the number of observed ecosystem states. These empirical results are in broad agreement with the theory that stronger feedback increases nonlinearity and hysteresis. They therefore represent one of the first direct empirical tests of the importance of feedback strength. However, we discuss several limitations of the study, which weaken confidence in this interpretation. Research demonstrating the causal effects of feedback strength on ecosystem responses to environmental change should be placed at the core of efforts to plan for sustainable ecosystems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7319241PMC
http://dx.doi.org/10.1002/ece3.6294DOI Listing

Publication Analysis

Top Keywords

environmental change
24
feedback strength
16
response environmental
12
nonlinearity hysteresis
12
feedback
8
feedback increases
8
increases nonlinearity
8
organism-environment feedbacks
8
hysteresis response
8
dissolved oxygen
8

Similar Publications

The European pond turtle (Emys orbicularis) is a wide-ranging, long-living freshwater species with low reproductive success, mainly due to high predation pressure. We studied how habitat variables and predator communities in near-natural marshes affect the survival of turtle eggs and hatchlings. We followed the survival of artificial turtle nests placed in marshes along Lake Balaton (Hungary) in May and June as well as hatchlings (dummies) exposed in September.

View Article and Find Full Text PDF

Climate change has caused many challenges to soil ecosystems, including soil salinity. Consequently, many strategies are advised to mitigate this issue. In this context, biochar is acknowledged as a useful addition that can alleviate the detrimental impacts of salt stress on plants.

View Article and Find Full Text PDF

Land use change can significantly alter the proportion of soil aggregates, thereby influencing aggregate stability and distribution of soil organic carbon (SOC). However, there is minimal research on the variations in the distribution of soil aggregates, aggregate stability, and SOC in soil aggregates following land use change from farmland (FL) to forest and grassland in the Loess Plateau region of China. Select six land use patterns (farmland (FL), abandoned cropland (ACL), Medicago sativa (MS), natural grassland (NG), Picea asperata Mast.

View Article and Find Full Text PDF

While numerous studies have established correlations between parasite load and negative effects on their hosts, establishing causality is more challenging because parasites can directly compromise host condition and survival or simply opportunistically thrive on an already weakened host. Here, we evaluated whether Ixodes uriae, a widespread seabird tick, can cause a decrease in growth parameters (body mass, bill length and growth rates) and survival of chicks of a colonially seabird, the black-browed albatross (Thalassarche melanophris) breeding on New Island (West Falkland). To investigate this, we daily removed the ticks from 28 randomly selected chicks during their first 14 days of life (treated chicks) and compared their growth and survival with 49 chicks of a control group.

View Article and Find Full Text PDF

Climate-driven distribution shifts of Iranian amphibians and identification of refugia and hotspots for effective conservation.

Sci Rep

December 2024

Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran.

This study investigates the potential impacts of climate change on the distribution of Iranian amphibian species and identifies refugia and biodiversity hotspots to inform effective conservation strategies. The study employed ensemble species distribution models to assess the impacts of climate change on 19 Iranian amphibian species. We analyzed future scenarios (2041-2060 & 2081-2100) under a high-emission pathway to identify potential range shifts and refugia (areas with stable or newly suitable climate).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!