Pathways of Methicillin-Resistant in Animal Model: New Insights Regarding Public Health.

Infect Drug Resist

Department of Animal Hygiene, Zoonoses and Animal Behaviour and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt.

Published: June 2020

Background: is considered one of the major threats regarding food safety worldwide. Methicillin-resistant (MRSA) strains in livestock, companion animals, and wild animals continue to be a potential risk to people working with them.

Aim: The current research aims to investigate the potential pathways of livestock-associated methicillin-resistant (LA-MRSA) strains in the body after oral infection using the experimental mouse model.

Methods: Seven groups of SPF male mice were purchased and housed. On day 1, six groups of mice were infected orally by the sterile gastric probe using 100 μL/mice of LA-MRSA bacterial suspension (1 × 10 colony-forming units (CFU)/mL). The remaining group was kept as negative controls. Over 15 days, these animals have been monitored. Fresh fecal samples were screened for LA-MRSA at day 0, day 7 and day 14 following oral administration of MRSA strains. All animals were sacrificed at day 15, and internal organs (liver, lung, kidney, and intestine) were harvested aseptically and divided into two sections. The first part was histopathologically investigated, while the other half has been tested for LA-MRSA re-isolation.

Result: The oral challenge of mice by MRSA strains showed that MRSA was re-isolated from feces and intestines of all inoculated mice groups and from internal organs (liver, lung, kidney and intestine) of most mice. Results were confirmed by the detection of the bacteria in gram-stained tissue sections and changes in H&E-stained histopathological tissue sections from these organs.

Conclusion: Data from the present study indicate the possible colonization of livestock-associated methicillin-resistant (LA-MRSA) in internal organs following oral infection and thus posing a risk for food-borne infection of MRSA. Infected animals could pass LA-MRSA through feces again, resulting in increased dispersion and environmental contamination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7283488PMC
http://dx.doi.org/10.2147/IDR.S252332DOI Listing

Publication Analysis

Top Keywords

mrsa strains
12
internal organs
12
livestock-associated methicillin-resistant
8
methicillin-resistant la-mrsa
8
oral infection
8
day day
8
organs liver
8
liver lung
8
lung kidney
8
kidney intestine
8

Similar Publications

Introduction: The mechanism of tannic acid (TA) intervention on methicillin-resistant (MRSA, USA 300) biofilm formation was explored using proteomics.

Methods: The minimum inhibitory concentration (MIC) of TA against the MRSA standard strain USA 300 was determined by two-fold serial dilution of the microbroth. The effects of TA were studied using crystal violet staining.

View Article and Find Full Text PDF

Epidemiological trends for burn wound infections in 2020 in albania.

Ann Burns Fire Disasters

December 2024

Department of Biomedical and Experimental Courses, Faculty of Medicine, University of Medicine, Tirana, Albania.

The burn patient is at high hazard for nosocomial infections (NI) as a result of the nature of the burn damage itself, the immune-compromising impacts of burns, prolonged clinic stays, and intensive diagnostic and therapeutic strategies. The aim of this study is to describe the actual epidemiology of burn wound colonization and infection in the Intensive Care Unit (ICU) of the Service of Burns and Plastic Surgery at the University Hospital Center in Tirana, Albania. The study is retrospective clinical and analytical.

View Article and Find Full Text PDF

Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a leading pathogen causing severe endovascular infections. The prophage-encoded protein Gp05 has been identified as a critical virulence factor that contributes to MRSA persistence during vancomycin (VAN) treatment in an experimental endocarditis model. However, the underlining mechanisms driving this persistence phenotype remain poorly understood.

View Article and Find Full Text PDF

Antimicrobial resistance poses a significant global health threat by reducing the effectiveness of conventional antibiotics, particularly against pathogens like Methicillin-resistant Staphylococcus aureus (MRSA). This study investigates the antimicrobial potential of rhizospheric soil bacteria from Prosopis cineraria (Sangri) in the Thar Desert. Bacterial strains isolated from these samples were observed to produce secondary metabolites, notably, Iturin A C-15 cyclic lipopeptide (SS1-3-P) which was extracted from strain Enterobacter cloacae SS1-3 and was purified and characterized using reverse-phase HPLC, ESI-LC/MS, Nile-Red Assay, and FT-IR analysis.

View Article and Find Full Text PDF

Background: Inactivation of infectious liquid waste can be performed by different means, including autoclaving or chemical inactivation. Autoclaving is most widely used, but cannot always be implemented, so that chemical inactivation is a possible alternative. However, its efficacy has to be proven by in-house validation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!