AI Article Synopsis

  • Algae-bacteria interactions are key contributors to harmful algal blooms (HABs), and this study aims to identify specific bacterial metabolites that influence algal growth by using a comprehensive collection of E. coli K-12 gene-disrupted mutants.
  • Screening identified 80 E. coli mutants that increased algal growth by roughly 1.5 times compared to wild-type, pinpointing five bacterial genes related to lipopolysaccharide (LPS) biosynthesis as significant factors.
  • LPS was shown to inhibit algal growth and induce oxidative stress, leading to decreased growth in various bloom-forming algae, demonstrating the effectiveness of the Keio collection method for discovering interactive bacterial metabolites and their associated genes.

Article Abstract

Algae-bacteria interaction is one of the main factors underlying the formation of harmful algal blooms (HABs). The aim of this study was to develop a genome-wide high-throughput screening method to identify HAB-influenced specific interactive bacterial metabolites using a comprehensive collection of gene-disrupted E. coli K-12 mutants (Keio collection). The screening revealed that a total of 80 gene knockout mutants in E. coli K-12 resulted in an approximately 1.5-fold increase in algal growth relative to that in wild-type E. coli. Five bacterial genes (lpxL, lpxM, kdsC, kdsD, gmhB) involved in the lipopolysaccharide (LPS) (or lipooligosaccharide, LOS) biosynthesis were identified from the screen. Relatively lower levels of LPS were detected in these bacteria compared to that in the wild-type. Moreover, the concentration-dependent decrease in microalgal growth after synthetic LPS supplementation indicated that LPS inhibits algal growth. LPS supplementation increased the 2,7-dichlorodihydrofluorescein diacetate fluorescence, as well as the levels of lipid peroxidation-mediated malondialdehyde formation, in a concentration-dependent manner, indicating that oxidative stress can result from LPS supplementation. Furthermore, supplementation with LPS also remarkably reduced the growth of diverse bloom-forming dinoflagellates and green algae. Our findings indicate that the Keio collection-based high-throughput in vitro screening is an effective approach for the identification of interactive bacterial metabolites and related genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327039PMC
http://dx.doi.org/10.1038/s41598-020-67322-wDOI Listing

Publication Analysis

Top Keywords

interactive bacterial
12
coli k-12
12
lps supplementation
12
genome-wide high-throughput
8
high-throughput screening
8
keio collection
8
bacterial metabolites
8
algal growth
8
lps
7
screening
4

Similar Publications

This study reports draft genomes of 30 bacteria representative of the plant food system microbiota and isolated from different sources in Italy and France. Individual genomes were reconstructed using PacBIO DNA sequencing: taxonomic classification and distribution of genes involved in microbe-environment interactions are reported to facilitate strains' characterization and utilization.

View Article and Find Full Text PDF

The marine ecosystem is characterized by a rich diversity of bacterial hosts and their phages. The propagation of phages is primarily limited by their ability to adsorb to host cells and is further challenged by various bacterial defense mechanisms. To fully realize the potential of phage therapy in aquaculture, a comprehensive understanding of phage-host interactions and their regulation is essential.

View Article and Find Full Text PDF

The continuous interaction between phages and their respective hosts has resulted in the evolution of multiple bacterial immune mechanisms. However, the diversity and prevalence of antiviral defense systems in complex communities are still unknown. We therefore investigated the diversity and abundance of viral defense systems in 3,038 high-quality bacterial and archaeal genomes from the rumen.

View Article and Find Full Text PDF

Studying the molecular basis of intestinal infections caused by enteric pathogens at the tissue level is challenging, because most human intestinal infection models have limitations, and results obtained from animals may not reflect the human situation. Infections with Salmonella enterica serovar Typhimurium (STm) have different outcomes between organisms. 3D tissue modeling of primary human material provides alternatives to animal experimentation, but epithelial co-culture with immune cells remains difficult.

View Article and Find Full Text PDF

Coral reefs are hotspots of marine biodiversity, which results in the synthesis of a wide variety of compounds with unique molecular scaffolds, and bioactivities, rendering reefs an ecosystem of interest. The chemodiversity stems from the intricate relationships between inhabitants of the reef, as the chemistry produced partakes in intra- and interspecies communication, settlement, nutrient acquisition, and defense. However, the coral reefs are declining at an unprecedented rate due to climate change, pollution, and increased incidence of pathogenic diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!