Introduction: Regular exercise is essential in the chronic phase of stroke recovery for improving or maintaining function, and reducing the risk of a second stroke. To achieve these goals, multiple components of fitness should be targeted with poststroke exercise, including aerobic capacity, strength and balance. However, following the recommended frequency and duration of each component separately can take a long time and lead to fatigue in people with stroke. Therefore, finding types of exercise that target multiple components of fitness all together is valuable.Reactive balance training (RBT) is a novel type of exercise where individuals repeatedly lose their balance in order to practise balance reactions. When people do RBT, they increase their heart rate and exert forces with their leg muscles which could improve aerobic fitness and muscle strength, respectively. This means that RBT could have the potential to improve multiple components of fitness, simultaneously.
Methods And Analysis: This is a randomised controlled non-inferiority trial with internal pilot study. Participants with chronic stroke will be randomly assigned to one of two groups: (1) RBT or (2) aerobic and strength training (AST). Participants in both groups will complete 1 hour of exercise, three times/week for 12 weeks. The primary objective is to determine the effect of RBT on aerobic capacity and knee muscles' strength. The secondary objective is to determine the effects of RBT and AST on balance control and balance confidence. We expect to find that RBT is superior to AST in terms of improving balance control and balance confidence, yet not inferior to AST in terms of its effects on aerobic capacity and strength.
Ethics And Dissemination: Research ethics approval has been received. Results will be disseminated directly to study participants at the end of the trial, and to other stakeholders via publication in a peer-reviewed journal.
Trial Registration Number: NCT04042961.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328813 | PMC |
http://dx.doi.org/10.1136/bmjopen-2019-035740 | DOI Listing |
Rheumatology (Oxford)
January 2025
Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain.
Objectives: COVID-19 and systemic sclerosis (SSc) share multiple similarities in their clinical manifestations, alterations in immune response, and therapeutic options. These resemblances have also been identified in other immune-mediated inflammatory diseases where a common genetic component has been found. Thus, we decided to evaluate for the first time this shared genetic architecture with SSc.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China.
Unlabelled: High temperature is an unavoidable environmental stress that generally exerts detrimental effects on organisms and has widespread effects on metabolism. Spermidine is an important member of the polyamines family and is involved in a range of abiotic stress responses in plants. Mitochondria play an essential role in cellular homeostasis and are key components of the stress response.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA.
Unlabelled: Pathogenic strains cause cholera using different mechanisms. O1 and O139 serogroup strains use the toxin-co-regulated pilus (TCP) and cholera toxin (CT) for intestinal colonization and to promote secretory diarrhea, while non-O1/non-O139 serogroup strains are typically non-toxigenic and use alternate virulence factors to cause a clinically similar disease. An O39 serogroup, TCP/CT-negative strain, named AM-19226, uses a type III secretion system (T3SS) to translocate more than 10 effector proteins into the host cell cytosol.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6012, New Zealand.
The organic semiconductor Y6 has been extensively used as an acceptor in organic photovoltaic devices, yielding high efficiencies. Its unique properties include a high refractive index, intrinsic exciton dissociation, and barrierless charge generation in bulk heterojunctions. However, the direct impact of the crystal packing morphology on the photophysics of Y6 has remained elusive, hindering further development of heterojunction and homojunction devices.
View Article and Find Full Text PDFJ Cell Mol Med
February 2025
Department of Neurobiology, Key Laboratory of Molecular Neurobiology of the Ministry of Education, Naval Medical University, Shanghai, China.
Myelin is the key structure for high-speed information transmission and is formed by oligodendrocytes (OLs) which are differentiated from oligodendrocyte precursor cells (OPCs) in the central nervous system. Lipid is the main component of myelin and the role of lipid metabolism-related molecules in myelination attach increasing attention. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) mediates the conversion of lysophosphatidylcholine (LPC) to phosphatidylcholine (PC), and its role in myelination draws our interest as LPC is a classical demyelination inducer and PC is a major component of myelin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!