Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Stool-based proteomics is capable of significantly augmenting our understanding of host-gut microbe interactions. However, compared to competing technologies, such as metagenomics and 16S rRNA sequencing, it is underutilized due to its low throughput and the negative impact sample contaminants can have on highly sensitive mass spectrometry equipment. Here, we present a new stool proteomic processing pipeline that addresses these shortcomings in a highly reproducible and quantitative manner. Using this method, 290 samples from a dietary intervention study were processed in approximately 1.5 weeks, largely done by a single researcher. These data indicated a subtle but distinct monotonic increase in the number of significantly altered proteins between study participants on fiber- or fermented food-enriched diets. Lastly, we were able to classify study participants based on their diet-altered proteomic profiles and demonstrated that classification accuracies of up to 89% could be achieved by increasing the number of subjects considered. Taken together, this study represents the first high-throughput proteomic method for processing stool samples in a technically reproducible manner and has the potential to elevate stool-based proteomics as an essential tool for profiling host-gut microbiome interactions in a clinical setting. Widely available technologies based on DNA sequencing have been used to describe the kinds of microbes that might correlate with health and disease. However, mechanistic insights might be best achieved through careful study of the dynamic proteins at the interface between the foods we eat, our microbes, and ourselves. Mass spectrometry-based proteomics has the potential to revolutionize our understanding of this complex system, but its application to clinical studies has been hampered by low-throughput and laborious experimentation pipelines. In response, we developed SHT-Pro, the first high-throughput pipeline designed to rapidly handle large stool sample sets. With it, a single researcher can process over one hundred stool samples per week for mass spectrometry analysis, conservatively approximately 10× to 100× faster than previous methods, depending on whether isobaric labeling is used or not. Since SHT-Pro is fairly simple to implement using commercially available reagents, it should be easily adaptable to large-scale clinical studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329322 | PMC |
http://dx.doi.org/10.1128/mSystems.00200-20 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!