The Discoidin, CUB, and LCCL domain-containing protein (DCBLD) family consists of two type-I transmembrane scaffolding receptors, DCBLD1 and DCBLD2, which play important roles in development and cancer. The nonreceptor tyrosine kinases FYN and ABL are known to drive phosphorylation of tyrosine residues in YXXP motifs within the intracellular domains of DCBLD family members, which leads to the recruitment of the Src homology 2 (SH2) domain of the adaptors CT10 regulator of kinase (CRK) and CRK-like (CRKL). We previously characterized the FYN- and ABL-driven phosphorylation of DCBLD family YXXP motifs. However, we have identified additional FYN- and ABL-dependent phosphorylation sites on DCBLD1 and DCBLD2. This suggests that beyond CRK and CRKL, additional DCBLD interactors may be regulated by FYN and ABL activity. Here, we report a quantitative proteomics approach in which we map the FYN- and ABL-regulated interactomes of DCBLD family members. We found FYN and ABL regulated the binding of several signaling molecules to DCBLD1 and DCBLD2, including members of the 14-3-3 family of adaptors. Biochemical investigation of the DCBLD2/14-3-3 interaction revealed ABL-induced binding of 14-3-3 family members directly to DCBLD2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8015000PMC
http://dx.doi.org/10.1074/mcp.RA120.002163DOI Listing

Publication Analysis

Top Keywords

fyn abl
16
dcbld family
16
dcbld1 dcbld2
12
family members
12
yxxp motifs
8
14-3-3 family
8
family
7
dcbld
6
fyn
4
abl regulate
4

Similar Publications

Dual Drug Repurposing: The Example of Saracatinib.

Int J Mol Sci

April 2024

PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal.

Saracatinib (AZD0530) is a dual Src/Abl inhibitor initially developed by AstraZeneca for cancer treatment; however, data from 2006 to 2024 reveal that this drug has been tested not only for cancer treatment, but also for the treatment of other diseases. Despite the promising pre-clinical results and the tolerability shown in phase I trials, where a maximum tolerated dose of 175 mg was defined, phase II clinical data demonstrated a low therapeutic action against several cancers and an elevated rate of adverse effects. Recently, pre-clinical research aimed at reducing the toxic effects and enhancing the therapeutic performance of saracatinib using nanoparticles and different pharmacological combinations has shown promising results.

View Article and Find Full Text PDF

Expression of genes potentially involved in loss of response in patients with chronic myeloid leukemia.

Gene

February 2024

Universidad Nacional de Misiones, Facultad de Ciencias Exactas Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular (BIOTECMOL), Misiones, Argentina. Electronic address:

Chronic Myeloid Leukemia (CML) is a hematological malignancy characterized by the presence of the BCR::ABL1 fusion gene, which leads to uncontrolled cell growth and survival. Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of CML, but a significant proportion of patients develop resistance or lose response to these drugs. Understanding the molecular mechanisms underlying treatment response and resistance is crucial for improving patient outcomes.

View Article and Find Full Text PDF

Specific phosphorylation of microtubule-associated protein 2c by extracellular signal-regulated kinase reduces interactions at its Pro-rich regions.

J Biol Chem

October 2022

National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Brno, Czech Republic. Electronic address:

Microtubule-associated protein 2 (MAP2) is an important neuronal target of extracellular signal-regulated kinase 2 (ERK2) involved in Raf signaling pathways, but mechanistic details of MAP2 phosphorylation are unclear. Here, we used NMR spectroscopy to quantitatively describe the kinetics of phosphorylation of individual serines and threonines in the embryonic MAP2 variant MAP2c. We carried out real-time monitoring of phosphorylation to discover major phosphorylation sites that were not identified in previous studies relying on specific antibodies.

View Article and Find Full Text PDF

Background: BCR-ABL mutation on the Philadelphia chromosome is the key driver of chronic myeloid leukemia (CML) pathogenesis. However, there are certain cases of myeloproliferative neoplasms (MPN) wherein no inherent driver mutation is detected resulting in clinical phenotype. It is important to identify key genes and pathways in driving the disease.

View Article and Find Full Text PDF

Kinase drug discovery represents an active area of therapeutic research, with previous pharmaceutical success improving patient outcomes across a wide variety of human diseases. In pancreatic ductal adenocarcinoma (PDAC), innovative pharmaceutical strategies such as kinase targeting have been unable to appreciably increase patient survival. This may be due, in part, to unchecked desmoplastic reactions to pancreatic tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!