Alphaherpesviral ribonucleotide reductase (RNR) is composed of large (pUL39, RR1) and small (pUL40, RR2) subunits. This enzyme can catalyze conversion of ribonucleotide to deoxynucleotide diphosphates that are further phosphorylated into deoxynucleotide triphosphate (dNTPs). The dNTPs are substrates for de novo viral DNA synthesis in infected host cells. The enzymatic activity of RNR depends on association between RR1 and RR2. However, the molecular basis underlying alphaherpesviral RNR complex formation is still largely unknown. In the current study, we investigated the pseudorabies virus (PRV) RNR interaction domains in pUL39 and pUL40. The interaction of pUL39 and pUL40 was identified by co-immunoprecipitation (co-IP) and colocalization analyses. Furthermore, the interaction amino acid (aa) domains in pUL39 and pUL40 were mapped using a series of truncated proteins. Consequently, the 90-210 aa in pUL39 was identified to be responsible for the interaction with pUL40. In turn, the 66-152, 218-258 and 280-303 aa in pUL40 could interact with pUL39, respectively. Deletion of 90-210 aa in pUL39 completely abrogated the interaction with pUL40. Deletion of 66-152, 218-258 and 280-303 aa in pUL40 remarkably weakened the interaction with pUL39, whereas a weak interaction could still be observed. Amino acid sequence alignments showed that the interaction domains identified in PRV pUL39/pUL40 were relatively non-conserved among the selected RNR subunits in alphaherpesviruses HSV1, HSV2, HHV3(VZV), BHV1, EHV1 and DEV. However, they were relatively conserved among PRV, HSV1 and HSV2. Collectively, our findings provided some molecular targets for inhibition of pUL39-pUL40 interaction to antagonize viral replication in PRV infected hosts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2020.108740DOI Listing

Publication Analysis

Top Keywords

interaction domains
12
pul39 pul40
12
interaction
9
pseudorabies virus
8
ribonucleotide reductase
8
pul39
8
pul40
8
domains pul39
8
interaction pul39
8
amino acid
8

Similar Publications

Background: Recent advancements in artificial intelligence (AI) have changed the care processes in mental health, particularly in decision-making support for health care professionals and individuals with mental health problems. AI systems provide support in several domains of mental health, including early detection, diagnostics, treatment, and self-care. The use of AI systems in care flows faces several challenges in relation to decision-making support, stemming from technology, end-user, and organizational perspectives with the AI disruption of care processes.

View Article and Find Full Text PDF

Diverse autoinhibitory mechanisms of FIIND-containing proteins: Insight into regulation of NLRP1 and CARD8 inflammasome.

PLoS Pathog

January 2025

Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Function-to-find domain (FIIND)-containing proteins, including NLRP1 and CARD8, are vital components of the inflammasome signaling pathway, critical for the innate immune response. These proteins exist in various forms due to autoproteolysis within the FIIND domain, resulting in full-length (FL), cleaved N-terminal (NT), and cleaved C-terminal (CT) peptides, which form autoinhibitory complexes in the steady state. However, the detailed mechanism remains elusive.

View Article and Find Full Text PDF

Introduction: Attention deficit hyperactivity disorder (ADHD) is one of the common neurodevelopmental disorders and is widely prevalent worldwide. The primary symptoms of ADHD include inattention, impulsivity, and hyperactivity, which significantly impact the cognitive, behavioral, and emotional dimensions of individuals. These disorders often continue throughout adulthood and, along with associated complications, affect various domains such as personal health, academic achievement, and social interactions.

View Article and Find Full Text PDF

SPT5 regulates RNA polymerase II stability via Cullin 3-ARMC5 recognition.

Sci Adv

January 2025

Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.

The stability of RNA polymerase II (Pol II) is tightly regulated during transcriptional elongation for proper control of gene expression. Our recent studies revealed that promoter-proximal Pol II is destabilized via the ubiquitin E3 ligase cullin 3 (CUL3) upon loss of transcription elongation factor SPT5. Here, we investigate how CUL3 recognizes chromatin-bound Pol II as a substrate.

View Article and Find Full Text PDF

The Notch intracellular domain (NICD) regulates gene expression during development and homeostasis in a transcription factor complex that binds DNA either as monomer, or cooperatively as dimers. Mice expressing Notch dimerization-deficient (NDD) alleles of Notch1 and Notch2 have defects in multiple tissues that are sensitized to environmental insults. Here, we report that cardiac phenotypes and DSS (Dextran Sodium Sulfate) sensitivity in NDD mice can be ameliorated by housing mice under hypo-allergenic conditions (food/bedding).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!