A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pseudoscorpion Wolbachia symbionts: diversity and evidence for a new supergroup S. | LitMetric

Background: Wolbachia are the most widely spread endosymbiotic bacteria, present in a wide variety of insects and two families of nematodes. As of now, however, relatively little genomic data has been available. The Wolbachia symbiont can be parasitic, as described for many arthropod systems, an obligate mutualist, as in filarial nematodes or a combination of both in some organisms. They are currently classified into 16 monophyletic lineage groups ("supergroups"). Although the nature of these symbioses remains largely unknown, expanded Wolbachia genomic data will contribute to understanding their diverse symbiotic mechanisms and evolution.

Results: This report focuses on Wolbachia infections in three pseudoscorpion species infected by two distinct groups of Wolbachia strains, based upon multi-locus phylogenies. Geogarypus minor harbours wGmin and Chthonius ischnocheles harbours wCisc, both closely related to supergroup H, while Atemnus politus harbours wApol, a member of a novel supergroup S along with Wolbachia from the pseudoscorpion Cordylochernes scorpioides (wCsco). Wolbachia supergroup S is most closely related to Wolbachia supergroups C and F. Using target enrichment by hybridization with Wolbachia-specific biotinylated probes to capture large fragments of Wolbachia DNA, we produced two draft genomes of wApol. Annotation of wApol highlights presence of a biotin operon, which is incomplete in many sequenced Wolbachia genomes.

Conclusions: The present study highlights at least two symbiont acquisition events among pseudoscorpion species. Phylogenomic analysis indicates that the Wolbachia from Atemnus politus (wApol), forms a separate supergroup ("S") with the Wolbachia from Cordylochernes scorpioides (wCsco). Interestingly, the biotin operon, present in wApol, appears to have been horizontally transferred multiple times along Wolbachia evolutionary history.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325362PMC
http://dx.doi.org/10.1186/s12866-020-01863-yDOI Listing

Publication Analysis

Top Keywords

wolbachia
13
genomic data
8
pseudoscorpion species
8
atemnus politus
8
cordylochernes scorpioides
8
scorpioides wcsco
8
biotin operon
8
supergroup
5
wapol
5
pseudoscorpion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!