Yucatan miniature pigs (YMPs) are similar to humans in spinal cord size as well as physiological and neuroanatomical features, making them a useful model for human spinal cord injury. However, little is known regarding pig gait kinematics, especially on a treadmill. In this study, 12 healthy YMPs were assessed during bipedal and/or quadrupedal stepping on a treadmill at six speeds (1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 km/h). Kinematic parameters, including limb coordination and proximal and distal limb angles, were measured. Findings indicate that YMPs use a lateral sequence footfall pattern across all speeds. Stride and stance durations decreased with increasing speed whereas swing duration showed no significant change. Across all speeds assessed, no significant differences were noted between hindlimb stepping parameters for bipedal or quadrupedal gait with the exception of distal limb angular kinematics. Specifically, significant differences were observed between locomotor tasks during maximum flexion (quadrupedal > bipedal), total excursion (bipedal > quadrupedal), and the phase relationship between the timing of maximum extension between the right and left hindlimbs (bipedal > quadrupedal). Speed also impacted maximum flexion and right-left phase relationships given that significant differences were found between the fastest speed (3.5 km/h) relative to each of the other speeds. This study establishes a methodology for bipedal and quadrupedal treadmill-based kinematic testing in healthy YMPs. The treadmill approach used was effective in recruiting primarily the spinal circuitry responsible for the basic stepping patterns as has been shown in cats. We recommend 2.5 km/h (0.7 m/sec) as a target walking gait for pre-clinical studies using YMPs, which is similar to that used in cats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9836690 | PMC |
http://dx.doi.org/10.1089/neu.2020.7050 | DOI Listing |
Sci Rep
December 2024
Graduate School of Human Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
Recent evidence indicates that human ancestors utilized a combination of quadrupedal walking, climbing, and bipedal walking. Therefore, the origin of bipedalism may be linked to underlying mechanisms supporting diverse locomotor modes. This study aimed to elucidate foundations of varied locomotor modes from the perspective of motor control by identifying muscle synergies and demonstrating similarities in synergy compositions across different locomotor modes in chimpanzees and Japanese macaques.
View Article and Find Full Text PDFInt J Sports Med
January 2025
Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
This study examines the energy expenditure and physiological responses associated with short-term quadrupedal locomotion compared to bipedal walking in humans. It aims to support evolutionary theory and explore quadrupedal locomotion's potential for enhancing fitness and health. In a randomized crossover design, 12 participants performed quadrupedal and bipedal walking on a treadmill at identical speeds.
View Article and Find Full Text PDFSci Adv
November 2024
Department of Social and Behavioral Sciences, Toulouse School of Economics, Institute for Advanced Study in Toulouse, Université Toulouse Capitole, Toulouse, France.
Human foragers avoid noncommunicable diseases that are leading causes of mortality, partly because physically active lifestyles promote healthy aging. High activity levels also promote tissue damage accumulation from wear-and-tear, increase risk of injury and disability which compromise productivity, and reduce energetic investments in somatic maintenance given constrained energy expenditure. Constraints intensify when nutrient supply is limited and surplus energy is directed toward pathogen defense and reproduction, as occurred throughout hominin evolution.
View Article and Find Full Text PDFNat Commun
October 2024
School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia.
An unusual pattern among the scaling laws in nature is that the fastest animals are neither the largest, nor the smallest, but rather intermediately sized. Because of the enormous diversity in animal shape, the mechanisms underlying this have long been difficult to determine. To address this, we challenge predictive human musculoskeletal simulations, scaled in mass from the size of a mouse (0.
View Article and Find Full Text PDFPredation is a fundamental selective pressure on animal morphology, as morphology is directly linked with physical performance and evasion. Bipedal heteromyid rodents, which are characterized by unique morphological traits such as enlarged hindlimbs, appear to be more successful than sympatric quadrupedal rodents at escaping predators such as snakes and owls, but no studies have directly compared the escape performance of bipedal and quadrupedal rodents. We used simulated predator attacks to compare the evasive jumping ability of bipedal kangaroo rats () to that of three quadrupedal rodent groups-pocket mice (), woodrats (), and ground squirrels ().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!