Thermal Magnetic Resonance (ThermalMR) leverages radio frequency (RF)-induced heating to examine the role of temperature in biological systems and disease. To advance RF heating with multi-channel RF antenna arrays and overcome the shortcomings of current RF signal sources, this work reports on a 32-channel modular signal generator (SG). The SG was designed around phase-locked loop (PLL) chips and a field-programmable gate array chip. To examine the system properties, switching/settling times, accuracy of RF power level and phase shifting were characterized. Electric field manipulation was successfully demonstrated in deionized water. RF heating was conducted in a phantom setup using self-grounded bow-tie RF antennae driven by the SG. Commercial signal generators limited to a lower number of RF channels were used for comparison. RF heating was evaluated with numerical temperature simulations and experimentally validated with MR thermometry. Numerical temperature simulations and heating experiments controlled by the SG revealed the same RF interference patterns. Upon RF heating similar temperature changes across the phantom were observed for the SG and for the commercial devices. To conclude, this work presents the first 32-channel modular signal source for RF heating. The large number of coherent RF channels, wide frequency range and accurate phase shift provided by the SG form a technological basis for ThermalMR controlled hyperthermia anti-cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408155 | PMC |
http://dx.doi.org/10.3390/cancers12071720 | DOI Listing |
J Insect Sci
January 2025
School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, UK.
Radio frequency identification (RFID) technology and marker recognition algorithms can offer an efficient and non-intrusive means of tracking animal positions. As such, they have become important tools for invertebrate behavioral research. Both approaches require fixing a tag or marker to the study organism, and so it is useful to quantify the effects such procedures have on behavior before proceeding with further research.
View Article and Find Full Text PDFSensors (Basel)
January 2025
The Blavatnik School of Computer Science and AI, Tel Aviv University, Tel Aviv 69978, Israel.
This article surveys the literature on miniature radio transmitters designed to track free-ranging wild animals using emitter-localization techniques. The articles covers the topics of power sources used in such transmitters, including miniature batteries and energy harvesting, techniques for generating the transmitted radio-frequency carrier, techniques for creating short radio pulses and more general on-off schedules, modulation in modern wildlife-tracking transmitters, construction, manufacturing, and tuning techniques, and recent trends in this area. The article also describes the recreation of the first successful wildlife-tracking transmitter, a nontrivial invention that had a profound impact on wildlife ecology, and explores its behavior.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Peking University Yangtze River Delta Institute of Optoelectronics, Nantong 100871, China.
To improve the performance of Radio Frequency Identification (RFID) multi-label systems, the multi-label network structure needs to be quickly located and optimized. A multi-label location measurement method based on the NLM-Harris algorithm is proposed in this paper. Firstly, multi-label geometric distribution images are obtained through a label image acquisition system of a multi-label semi-physical simulation platform with two vertical Charge-Coupled Device (CCD) cameras, and Gaussian noise is added to the image to simulate thermoelectric interference.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, UK.
In radio frequency identification (RFID), differences in spectrum policies and tag misreading in different countries are the two main issues that limit its application. To solve these problems, this article proposes a composite right/left-handed transmission line (CRLH-TL)-based reconfigurable antenna for ultra-high frequency near-field and far-field RFID reader applications. The CRLH-TL is achieved using a periodically capacitive gap-loaded parallel plate line.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electronic and Telecommunications Systems, Rzeszów University of Technology, Wincentego Pola 2, 35-959 Rzeszow, Poland.
The production of consumer electronics using electrically conductive materials is a dynamically developing sector of the economy. E-textiles (electronic textiles) are also used in radio frequency identification technology, mainly in the production of tag antennas. For economic reasons, it is important that the finished product is universal, although frequencies in radio systems have different values in different regions of the world.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!