Global natural products social (GNPS) molecular networking is a useful tool to categorize chemical space within samples and streamline the discovery of new natural products. Here, we demonstrate its use in chemically profiling the extract of the marine tunicate comprised of many previously reported rubrolides, for new chemical entities. Within the rubrolide cluster, two masses that did not correspond to previously reported congeners were detected, and, following MS-guided fractionation, led to the isolation of new methylated rubrolides T () and (/)-U (). Both compounds showed strong growth inhibitory activity against the Gram-positive bacteria , with minimum inhibitory concentration (MIC) values of 0.41 and 0.91 μM, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7401252PMC
http://dx.doi.org/10.3390/md18070337DOI Listing

Publication Analysis

Top Keywords

marine tunicate
8
natural products
8
targeted isolation
4
isolation rubrolides
4
rubrolides zealand
4
zealand marine
4
tunicate global
4
global natural
4
products social
4
social gnps
4

Similar Publications

Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.

View Article and Find Full Text PDF

Involvement of Metalloproteases in the Fertilization of the Ascidian .

Biomolecules

November 2024

Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan.

We previously reported that five astacin-like metalloproteases with thrombospondin type-1 repeats (Tasts) located on the sperm surface are a promising candidate as the protease involved in sperm penetration of the vitelline coat (VC) during fertilization of the ascidian type A (Phlebobranchia). However, whether such a protease is involved in the fertilization of other ascidians is unknown. Here, we investigated the effects of four metalloprotease inhibitors on the fertilization of the ascidian (Stolidobranchia).

View Article and Find Full Text PDF

Typical high-throughput single-cell RNA-sequencing (scRNA-seq) analyses are primarily conducted by (pseudo)alignment, through the lens of annotated gene models, and aimed at detecting differential gene expression. This misses diversity generated by other mechanisms that diversify the transcriptome such as splicing and V(D)J recombination, and is blind to sequences missing from imperfect reference genomes. Here, we present sc-SPLASH, a highly efficient pipeline that extends our SPLASH framework for statistics-first, reference-free discovery to barcoded scRNA-seq (10x Chromium) and spatial transcriptomics (10x Visium); we also provide its optimized module for preprocessing and -mer counting in barcoded data, BKC, as a standalone tool.

View Article and Find Full Text PDF

Animals must avoid adhesion to objects in the environment to maintain their mobility and independence. The marine invertebrate chordate ascidians are characterized by an acellular matrix tunic enveloping their entire body for protection and swimming. The tunic of ascidian larvae consists of a surface cuticle layer and inner matrix layer.

View Article and Find Full Text PDF

The timing of metamorphosis and settlement is critical for the survival and reproductive success of marine animals with biphasic life cycles. Thyroid hormones (THs) regulate developmental timing in diverse groups of chordates, including the regulation of metamorphosis in amphibians, teleosts, lancelets, tunicates, and lampreys. Recent evidence suggests a role for TH regulation of metamorphosis outside of the chordates, including echinoderms, annelids, and molluscs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!