The current investigation aimed to improve the topical efficacy of imiquimod in combination with curcumin using the nanoemulsion-based delivery system through a combinatorial approach. Co-delivery of curcumin acts as an adjuvant therapeutic and to minimize the adverse skin reactions that are frequently associated with the topical therapy of imiquimod for the treatment of cutaneous infections and basal cell carcinomas. The low-energy emulsification method was used for the nano-encapsulation of imiquimod and curcumin in the nanodroplet oil phase, which was stabilized using Tween 20 in an aqueous dispersion system. The weak base property of imiquimod helped to increase its solubility in oleic acid compared with ethyl oleate, which indicates that fatty acids should be preferred as the oil phase for the design of imiquimod-loaded topical nanoemulsion compared with fatty acid esters. The phase diagram method was used to optimize the percentage composition of the nanoemulsion formulation. The mean droplet size of the optimized nanoemulsion was 76.93 nm, with a polydispersity index (PdI) value of 0.121 and zeta potential value of -20.5 mV. The optimized imiquimod-loaded nanoemulsion was uniformly dispersed in carbopol 934 hydrogel to develop into a nanoemulgel delivery system. The imiquimod nanoemulgel exhibited significant improvement (p<0.05) in skin permeability and deposition profile after topical application. The in vivo effectiveness of the combination of imiquimod and curcumin nanoemulgel was compared to the imiquimod nanoemulgel and imiquimod gel formulation through topical application for ten days in BALB/c mice. The combination of curcumin with imiquimod in the nanoemulgel system prevented the appearance of psoriasis-like symptoms compared with the imiquimod nanoemulgel and imiquimod gel formulation entirely. Further, the imiquimod nanoemulgel as a mono-preparation slowed and reduced the psoriasis-like skin reaction when compared with the conventional imiquimod gel, and that was contributed to by the control release property of the nano-encapsulation approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407235 | PMC |
http://dx.doi.org/10.3390/biom10070968 | DOI Listing |
Eur J Pharm Sci
February 2025
College of Pharmacy and Medical Technology, Putian University, Putian 351100, Fujian, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Putian 351100, Fujian, China.
Blue light will be a promising alternative for photodynamic therapy in psoriasis, but the photosensitizer in vivo remains unexplored. Mesoporous zinc phosphate microparticle (MZP) was synthesized successfully in this study, as evidenced by XPS, XRD, and nitrogen adsorption experiments. Its psoriatic skin-sensitive property was corroborated by SEM and the higher cumulative release rate of that impregnated with curcumin (Cur) and glycyrrhizic acid (GA), namely Cur-GA-MZP, at pH 5.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2024
Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China.
Psoriasis is a systemic, recurrent, chronic autoimmune skin disease. However, psoriasis drugs have poor skin permeability and high toxicity, resulting in low bioavailability and affecting their clinical application. In this study, we propose a curcumin-based ionic liquid hydrogel loaded with ilomastat (Cur-Car-IL@Ilo hydrogel), which can effectively maintain the sustained release of drugs and improve the skin permeability of drugs.
View Article and Find Full Text PDFGels
January 2024
Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed.
View Article and Find Full Text PDFGels
December 2023
Institute of Pharmacy, Clinical Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany.
Psoriasis is a chronic inflammatory skin disease characterized by the hyperproliferation and aberrant differentiation of epidermal keratinocytes. It is a debilitating condition that can cause significant physical and emotional distress. Natural anti-psoriatic agents have been investigated as alternatives to conventional allopathic medications, as they have notable limitations and drawbacks.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2023
College of Pharmacy, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 511436, China.
Psoriasis and diabetes are both common comorbidities for each other, where inflammation and insulin resistance act in a vicious cycle, driving the progression of disease through the activation of the NF-κB signaling pathway. Therefore, disrupting the linkage between inflammation and insulin resistance by inhibiting the NF-κB pathway presents a promising therapeutic strategy for addressing psoriasis-diabetic comorbidity. Herein, an open-loop therapy was developed by integrating microneedle-mediated short- and long-range missiles to target psoriasis and diabetes, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!