Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Exposure assessment is a key component in the risk assessment of engineered nanomaterials (ENMs). While direct and quantitative measurements of ENMs in complex environmental matrices remain challenging, environmental fate models (EFMs) can be used alternatively for estimating ENMs' distributions in the environment. This review describes and assesses the development and capability of EFMs, focusing on surface waters. Our review finds that current engineered nanomaterial (ENM) exposure models can be largely classified into three types: material flow analysis models (MFAMs), multimedia compartmental models (MCMs), and spatial river/watershed models (SRWMs). MFAMs, which is already used to derive predicted environmental concentrations (PECs), can be used to estimate the releases of ENMs as inputs to EFMs. Both MCMs and SRWMs belong to EFMs. MCMs are spatially and/or temporally averaged models, which describe ENM fate processes as intermedia transfer of well-mixed environmental compartments. SRWMs are spatiotemporally resolved models, which consider the variability in watershed and/or stream hydrology, morphology, and sediment transport of river networks. As the foundation of EFMs, we also review the existing and emerging ENM fate processes and their inclusion in recent EFMs. We find that while ENM fate processes, such as heteroaggregation and dissolution, are commonly included in current EFMs, few models consider photoreaction and sulfidation, evaluation of the relative importance of fate processes, and the fate of weathered/transformed ENMs. We conclude the review by identifying the opportunities and challenges in using EFMs for ENMs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349326 | PMC |
http://dx.doi.org/10.3390/ijms21124554 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!