https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=32604972&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 3260497220240329
2309-608X622020Jun26Journal of fungi (Basel, Switzerland)J Fungi (Basel)Mucorales Species and Macrophages.9410.3390/jof6020094Mucormycosis is an emerging fungal infection caused by Mucorales with an unacceptable high mortality rate. Mucorales is a complex fungal group, including eleven different genera that can infect humans. This heterogeneity is associated with species-specific invasion pathways and responses to the host defense mechanisms. The host innate immune system plays a major role in preventing Mucorales growth and host invasion. In this system, macrophages are the main immune effector cells in controlling these fungi by rapid and efficient phagocytosis of the spores. However, Mucorales have evolved mechanisms to block phagosomal maturation and species-specific mechanisms to either survive as dormant spores inside the macrophage, as Rhizopus species, or geminate and escape, as Mucor species. Classical fungal models of mucormycosis, mostly Rhizopus, have made important contributions to elucidate key aspects of the interaction between Mucorales and macrophages, but they lack robust tools for genetic manipulation. The recent introduction of the genetically tractable Mucor circinelloides as a model of mucormycosis offers the possibility to analyze gene function. This has allowed the identification of regulatory pathways that control the fungal response to phagocytosis, including a non-canonical RNAi pathway (NCRIP) that regulates the expression of most genes regulated by phagocytosis.NicolásFrancisco EFEDepartamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain.MurciaLauraLDepartamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain.NavarroEusebioE0000-0002-3091-4378Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain.Navarro-MendozaMaría IsabelMI0000-0002-3560-6155Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain.Pérez-ArquesCarlosC0000-0003-1384-3608Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain.GarreVictorianoV0000-0001-7605-1726Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain.engPGC2018-097452-B-I00Ministerio de Ciencia, Innovación y UniversidadesRYC-2014-15844Ministerio de Ciencia, Innovación y UniversidadesFPU14/01983Ministerio de Educación, Cultura y DeporteFPU14/01832Ministerio de Educación, Cultura y DeporteJournal ArticleReview20200626
SwitzerlandJ Fungi (Basel)1016718272309-608XRNAiapoptosisgerminationironmelaninnutritional immunityphagosome maturationThe authors declare no conflict of interest.
202062202062320206232020726020207260202072612020626epublish32604972PMC734486410.3390/jof6020094jof6020094Denning D.W., O’Driscoll B.R., Hogaboam C.M., Bowyer P., Niven R.M. The link between fungi and severe asthma: A summary of the evidence. Eur. Respir. J. 2006;27:615–626. doi: 10.1183/09031936.06.00074705.10.1183/09031936.06.0007470516507864Casadevall A. Fungi and the rise of mammals. PLoS Pathog. 2012;8:e1002808. doi: 10.1371/journal.ppat.1002808.10.1371/journal.ppat.1002808PMC342093822916007Greene J., Pak J., Tucci V., Vincent A., Sandin R. Mucormycosis in immunochallenged patients. J. Emergencies Trauma Shock. 2008;1:106. doi: 10.4103/0974-2700.42203.10.4103/0974-2700.42203PMC270060819561989Dannaoui E. Antifungal resistance in mucorales. Int. J. Antimicrob. Agents. 2017;50:617–621. doi: 10.1016/j.ijantimicag.2017.08.010.10.1016/j.ijantimicag.2017.08.01028802855Skiada A., Pagano L., Groll A., Zimmerli S., Dupont B., Lagrou K., Lass-Florl C., Bouza E., Klimko N., Gaustad P., et al. Zygomycosis in Europe: Analysis of 230 cases accrued by the registry of the European Confederation of Medical Mycology (ECMM) Working Group on Zygomycosis between 2005 and 2007. Clin. Microbiol. Infect. 2011;17:1859–1867. doi: 10.1111/j.1469-0691.2010.03456.x.10.1111/j.1469-0691.2010.03456.x21199154Naranjo-Ortiz M.A., Gabaldón T. Fungal evolution: Diversity, taxonomy and phylogeny of the Fungi. Biol. Rev. 2019;94:2101–2137. doi: 10.1111/brv.12550.10.1111/brv.12550PMC689992131659870Caramalho R., Tyndall J.D.A., Monk B.C., Larentis T., Lass-Flörl C., Lackner M. Intrinsic short-Tailed azole resistance in mucormycetes is due to an evolutionary conserved aminoacid substitution of the lanosterol 14α-demethylase. Sci. Rep. 2017;7:15898. doi: 10.1038/s41598-017-16123-9.10.1038/s41598-017-16123-9PMC569828929162893Calo S., Shertz-Wall C., Lee S.C., Bastidas R.J., Nicolás F.E., Granek J.A., Mieczkowski P., Torres-Martínez S., Ruiz-Vázquez R.M., Cardenas M.E., et al. Antifungal drug resistance evoked via RNAi-dependent epimutations. Nature. 2014;513:555–558. doi: 10.1038/nature13575.10.1038/nature13575PMC417700525079329Calo S., Nicolás F.E., Lee S.C., Vila A., Cervantes M., Torres-Martinez S., Ruiz-Vazquez R.M., Cardenas M.E., Heitman J. A non-canonical RNA degradation pathway suppresses RNAi-dependent epimutations in the human fungal pathogen Mucor circinelloides. PLoS Genet. 2017;13:e1006686. doi: 10.1371/journal.pgen.1006686.10.1371/journal.pgen.1006686PMC538478328339467Chang Z., Billmyre R.B., Lee S.C., Heitman J. Broad antifungal resistance mediated by RNAi-dependent epimutation in the basal human fungal pathogen Mucor circinelloides. PLoS Genet. 2019;15:e1007957. doi: 10.1371/journal.pgen.1007957.10.1371/journal.pgen.1007957PMC638641430742617Nicolas F.E., Moxon S., de Haro J.P., Calo S., Grigoriev I.V., Torres-Martínez S., Moulton V., Ruiz-Vázquez R.M., Dalmay T. Endogenous short RNAs generated by Dicer 2 and RNA-dependent RNA polymerase 1 regulate mRNAs in the basal fungus Mucor circinelloides. Nucleic Acids Res. 2010;38:5535–5541. doi: 10.1093/nar/gkq301.10.1093/nar/gkq301PMC293822420427422Spatafora J.W., Chang Y., Benny G.L., Lazarus K., Smith M.E., Berbee M.L., Bonito G., Corradi N., Grigoriev I., Gryganskyi A., et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia. 2016;108:1028–1046. doi: 10.3852/16-042.10.3852/16-042PMC607841227738200Wijayawardene N.N., Pawłowska J., Letcher P.M., Kirk P.M., Humber R.A., Schüßler A., Wrzosek M., Muszewska A., Okrasińska A., Istel Ł., et al. Notes for genera: Basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota) Fungal Divers. 2018;92:43–129. doi: 10.1007/s13225-018-0409-5.10.1007/s13225-018-0409-5Wagner L., de Hoog S., Alastruey-Izquierdo A., Voigt K., Kurzai O., Walther G. A revised species concept for opportunistic Mucor species reveals species-specific antifungal susceptibility profiles. Antimicrob. Agents Chemother. 2019;63:1–8. doi: 10.1128/AAC.00653-19.10.1128/AAC.00653-19PMC665877131182532Walther G., Wagner L., Kurzai O. Outbreaks of mucorales and the species involved. Mycopathologia. 2019 doi: 10.1007/s11046-019-00403-1.10.1007/s11046-019-00403-131734800Ribes J.A., Vanover-Sams C.L., Baker D.J. Zygomycetes in human disease. Clin. Microbiol. Rev. 2000;13:236–301. doi: 10.1128/CMR.13.2.236.10.1128/CMR.13.2.236PMC10015310756000Al-Ajam M.R., Bizri A.R., Mokhbat J., Weedon J., Lutwick L. Mucormycosis in the Eastern Mediterranean: A seasonal disease. Epidemiol. Infect. 2006;134:341–346. doi: 10.1017/S0950268805004930.10.1017/S0950268805004930PMC287038516490139Hoffmann K., Discher S., Voigt K. Revision of the genus Absidia (Mucorales, Zygomycetes) based on physiological, phylogenetic, and morphological characters; thermotolerant Absidia spp. form a coherent group, Mycocladiaceae fam. nov. Mycol. Res. 2007;111:1169–1183. doi: 10.1016/j.mycres.2007.07.002.10.1016/j.mycres.2007.07.00217997297Cheng V.C.C., Chan J.F.W., Ngan A.H.Y., To K.K.W., Leung S.Y., Tsoi H.W., Yam W.C., Tai J.W.M., Wong S.S.Y., Tse H., et al. Outbreak of intestinal infection due to Rhizopus microsporus. J. Clin. Microbiol. 2009;47:2834–2843. doi: 10.1128/JCM.00908-09.10.1128/JCM.00908-09PMC273812819641069Schipper M.A.A. On certain species of Mucor with a key to all accepted species. Stud. Mycol. 1978;17:1–52.Vellanki S., Navarro-Mendoza M.I., Garcia A.B., Murcia L., Perez-Arques C., Garre V., Nicolas F.E., Lee S.C. Mucor circinelloides: Growth, maintenance and genetic manipulation. Curr. Protoc. Microbiol. 2018;49:e53. doi: 10.1002/cpmc.53.10.1002/cpmc.53PMC606064030040216Hussell T., Bell T.J. Alveolar macrophages: Plasticity in a tissue-specific context. Nat. Rev. Immunol. 2014;14:81–93. doi: 10.1038/nri3600.10.1038/nri360024445666Ghuman H., Voelz K. Innate and adaptive immunity to Mucorales. J. Fungi. 2017;3:48. doi: 10.3390/jof3030048.10.3390/jof3030048PMC571595429371565Hassan M.I.A., Voigt K. Pathogenicity patterns of mucormycosis: Epidemiology, interaction with immune cells and virulence factors. Med. Mycol. 2019;57:S245–S256. doi: 10.1093/mmy/myz011.10.1093/mmy/myz011PMC639475630816980Ibrahim A.S., Voelz K. The mucormycete–host interface. Curr. Opin. Microbiol. 2017;40:40–45. doi: 10.1016/j.mib.2017.10.010.10.1016/j.mib.2017.10.010PMC573372729107938Bouchara J.P., Oumeziane N.A., Lissitzky J.C., Larcher G., Tronchin G., Chabasse D. Attachment of spores of the human pathogenic fungus Rhizopus oryzae to extracellular matrix components. Eur. J. Cell Biol. 1996;70:76–83.8738422Liu M., Spellberg B., Phan Q.T., Fu Y., Fu Y., Lee A.S., Edwards J.E., Filler S.G., Ibrahim A.S. The endothelial cell receptor GRP78 is required for mucormycosis pathogenesis in diabetic mice. J. Clin. Invest. 2010;120:1914–1924. doi: 10.1172/JCI42164.10.1172/JCI42164PMC287795820484814Chibucos M.C., Soliman S., Gebremariam T., Lee H., Daugherty S., Orvis J., Shetty A.C., Crabtree J., Hazen T.H., Etienne K.A., et al. An integrated genomic and transcriptomic survey of mucormycosis-causing fungi. Nat. Commun. 2016;7:12218. doi: 10.1038/ncomms12218.10.1038/ncomms12218PMC496184327447865Watkins T.N., Gebremariam T., Swidergall M., Shetty A.C., Graf K.T., Alqarihi A., Alkhazraji S., Alsaadi A.I., Edwards V.L., Filler S.G., et al. Inhibition of EGFR signaling protects from mucormycosis. MBio. 2018;9:e01384-18. doi: 10.1128/mBio.01384-18.10.1128/mBio.01384-18PMC609447830108171Erwig L.P., Gow N.A.R. Interactions of fungal pathogens with phagocytes. Nat. Rev. Microbiol. 2016;14:163–176. doi: 10.1038/nrmicro.2015.21.10.1038/nrmicro.2015.2126853116López-Muñoz A., Nicolás F.E., García-Moreno D., Pérez-Oliva A.B., Navarro-Mendoza M.I., Hernández-Oñate M.A., Herrera-Estrella A., Torres-Martínez S., Ruiz-Vázquez R.M., Garre V., et al. An adult zebrafish model reveals that mucormycosis induces apoptosis of infected macrophages. Sci. Rep. 2018;8:12802. doi: 10.1038/s41598-018-30754-6.10.1038/s41598-018-30754-6PMC610914830143654Andrianaki A.M., Kyrmizi I., Thanopoulou K., Baldin C., Drakos E., Soliman S.S.M., Shetty A.C., McCracken C., Akoumianaki T., Stylianou K., et al. Iron restriction inside macrophages regulates pulmonary host defense against Rhizopus species. Nat. Commun. 2018;9:3333. doi: 10.1038/s41467-018-05820-2.10.1038/s41467-018-05820-2PMC610224830127354Voelz K., Gratacap R.L., Wheeler R.T. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides. Dis. Model. Mech. 2015;8:1375–1388. doi: 10.1242/dmm.019992.10.1242/dmm.019992PMC463178526398938Kraibooj K., Park H.R., Dahse H.M., Skerka C., Voigt K., Figge M.T. Virulent strain of Lichtheimia corymbifera shows increased phagocytosis by macrophages as revealed by automated microscopy image analysis. Mycoses. 2014;57:56–66. doi: 10.1111/myc.12237.10.1111/myc.1223725179042Levitz S.M., Selsted M.E., Ganz T., Lehrer R.I., Diamond R.D., Levitz S.M., Selsted M.E., Ganz T., Lehrer R.I., Diamond R.D. In vitro killing of spores and hyphae of Aspergillus fumigatus and Rhizopus oryzae by rabbit neutrophil cationic peptides and bronchoalveolar macrophages. J. Infect. Dis. 1986;154:483–489. doi: 10.1093/infdis/154.3.483.10.1093/infdis/154.3.4833525696Waldorf A.R., Ruderman N., Diamond R.D. Specific susceptibility to mucormycosis in murine diabetes and bronchoalveolar macrophage defense against Rhizopus. J. Clin. Invest. 1984;74:150–160. doi: 10.1172/JCI111395.10.1172/JCI111395PMC4251956736246Jorens P.G., Boelaert J.R., Halloy V., Zamora R., Schneider Y.J., Herman A.G. Human and rat macrophages mediate fungistatic activity against Rhizopus species differently: In vitro and ex vivo studies. Infect. Immun. 1995;63:4489–4494. doi: 10.1128/IAI.63.11.4489-4494.1995.10.1128/IAI.63.11.4489-4494.1995PMC1736397591090Li C.H., Cervantes M., Springer D.J., Boekhout T., Ruiz-Vazquez R.M., Torres-Martinez S.R., Heitman J., Lee S.C. Sporangiospore size dimorphism is linked to virulence of Mucor circinelloides. PLoS Pathog. 2011;7:e1002086. doi: 10.1371/journal.ppat.1002086.10.1371/journal.ppat.1002086PMC311681321698218Lee S.C., Li A., Calo S., Inoue M., Tonthat N.K., Bain J.M., Louw J., Shinohara M.L., Erwig L.P., Schumacher M.A., et al. Calcineurin orchestrates dimorphic transitions, antifungal drug responses and host-pathogen interactions of the pathogenic mucoralean fungus Mucor circinelloides. Mol. Microbiol. 2015;97:844–865. doi: 10.1111/mmi.13071.10.1111/mmi.13071PMC463302226010100Trieu T.A., Navarro-Mendoza M.I., Pérez-Arques C., Sanchis M., Capilla J., Navarro-Rodriguez P., Lopez-Fernandez L., Torres-Martínez S., Garre V., Ruiz-Vázquez R.M., et al. RNAi-based functional genomics identifies new virulence determinants in mucormycosis. PLoS Pathog. 2017;13:e1006150. doi: 10.1371/journal.ppat.1006150.10.1371/journal.ppat.1006150PMC528747428107502Pagano L., Ricci P., Tonso A., Nosari A., Cudillo L., Montillo M., Cenacchi A., Pacilli L., Fabbiano F., Del Favero A. Mucormycosis in patients with haematological malignancies: A retrospective clinical study of 37 cases. Br. J. Haematol. 1997;99:331–336. doi: 10.1046/j.1365-2141.1997.3983214.x.10.1046/j.1365-2141.1997.3983214.x9375750Waldorf A.R., Diamond R.D. Neutrophil chemotactic responses induced by fresh and swollen Rhizopus oryzae spores and Aspergillus fumigatus conidia. Infect.Immun. 1985;48:458–463. doi: 10.1128/IAI.48.2.458-463.1985.10.1128/IAI.48.2.458-463.1985PMC2613443157647Kolaczkowska E., Kubes P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 2013;13:159–175. doi: 10.1038/nri3399.10.1038/nri339923435331Farmakiotis D., Kontoyiannis D.P. Mucormycoses. Infect. Dis. Clin. North. Am. 2016;30:143–163. doi: 10.1016/j.idc.2015.10.011.10.1016/j.idc.2015.10.01126897065Binder U., Maurer E., Lass-Flörl C. Mucormycosis - from the pathogens to the disease. Clin. Microbiol. Infect. 2014;20:60–66. doi: 10.1111/1469-0691.12566.10.1111/1469-0691.1256624476149Inglesfield S., Jasiulewicz A., Hopwood M., Tyrrell J., Youlden G., Mazon-Moya M., Millington O.R., Mostowy S., Jabbari S., Voelz K. Robust phagocyte recruitment controls the opportunistic fungal pathogen Mucor circinelloides in innate granulomas in vivo. MBio. 2018;9:e02010-17. doi: 10.1128/mBio.02010-17.10.1128/mBio.02010-17PMC587492029588406Schmidt S., Tramsen L., Perkhofer S., Lass-Flörl C., Hanisch M., Röger F., Klingebiel T., Koehl U., Lehrnbecher T. Rhizopus oryzae hyphae are damaged by human natural killer (NK) cells, but suppress NK cell mediated immunity. Immunobiology. 2013;218:939–944. doi: 10.1016/j.imbio.2012.10.013.10.1016/j.imbio.2012.10.01323201314Speth C., Rambach G., Lass-Flörl C. Platelet immunology in fungal infections. Thromb. Haemost. 2014;112:632–639. doi: 10.1160/TH14-01-0074.10.1160/TH14-01-007424990293Schmidt S., Schneider A., Demir A., Lass-Flörl C., Lehrnbecher T. Natural killer cell-mediated damage of clinical isolates of mucormycetes. Mycoses. 2016;59:34–38. doi: 10.1111/myc.12431.10.1111/myc.1243126578394Perkhofer S., Kainzner B., Kehrel B.E., Dierich M.P., Nussbaumer W., Lass-Flörl C. Potential antifungal effects of human platelets against zygomycetes in vitro. J. Infect. Dis. 2009;200:1176–1179. doi: 10.1086/605607.10.1086/605607PMC301787119698079Semple J.W., Italiano J.E., Freedman J. Platelets and the immune continuum. Nat. Rev. Immunol. 2011;11:264–274. doi: 10.1038/nri2956.10.1038/nri295621436837Potenza L., Vallerini D., Barozzi P., Riva G., Forghieri F., Zanetti E., Quadrelli C., Candoni A., Maertens J., Rossi G., et al. Mucorales-specific T cells emerge in the course of invasive mucormycosis and may be used as a surrogate diagnostic marker in high-risk patients. Blood. 2011;118:5416–5419. doi: 10.1182/blood-2011-07-366526.10.1182/blood-2011-07-36652621931119Lewis R.E., Georgiadou S.P., Sampsonas F., Chamilos G., Kontoyiannis D.P. Risk factors for early mortality in haematological malignancy patients with pulmonary mucormycosis. Mycoses. 2014;57:49–55. doi: 10.1111/myc.12101.10.1111/myc.12101PMC386753523905713Kyvernitakis A., Torres H.A., Jiang Y., Chamilos G., Lewis R.E., Kontoyiannis D.P. Initial use of combination treatment does not impact survival of 106 patients with haematologic malignancies and mucormycosis: A propensity score analysis. Clin. Microbiol. Infect. 2016;22:811.e1–811.e8. doi: 10.1016/j.cmi.2016.03.029.10.1016/j.cmi.2016.03.02927085727Miller M.J., Hejazi A.S., Wei S.H., Cahalan M.D., Parker I. T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc. Natl. Acad. Sci. USA. 2004;101:998–1003. doi: 10.1073/pnas.0306407101.10.1073/pnas.0306407101PMC32713314722354Chamilos G., Ganguly D., Lande R., Gregorio J., Meller S., Goldman W.E., Gilliet M., Kontoyiannis D.P. Generation of IL-23 producing Dendritic Cells (DCs) by airborne fungi regulates fungal pathogenicity via the induction of TH-17 responses. PLoS ONE. 2010;5:e12955. doi: 10.1371/journal.pone.0012955.10.1371/journal.pone.0012955PMC294488920886035Pérez-Arques C., Navarro-Mendoza M.I., Murcia L., Lax C., Martínez-García P., Heitman J., Nicolás F.E., Garre V. Mucor circinelloides thrives inside the phagosome through an Atf-mediated germination pathway. MBio. 2019;10:e02765-18. doi: 10.1128/mBio.02765-18.10.1128/mBio.02765-18PMC642875730723131Pérez-Arques C., Navarro-Mendoza M.I., Murcia L., Navarro E., Garre V., Nicolás F.E. A non-canonical RNAi pathway controls virulence and genome stability in Mucorales. PLoS Genet. 2020 doi: 10.1101/2020.01.14.906289.10.1101/2020.01.14.906289PMC737751932658892Charlier C., Nielsen K., Daou S., Brigitte M., Chretien F., Dromer F. Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect. Immun. 2009;77:120–127. doi: 10.1128/IAI.01065-08.10.1128/IAI.01065-08PMC261228518936186Ibrahim A.S., Gebremariam T., Lin L., Luo G., Husseiny M.I., Skory C.D., Fu Y., French S.W., Edwards J.E., Spellberg B. The high affinity iron permease is a key virulence factor required for Rhizopus oryzae pathogenesis. Mol. Microbiol. 2010;77:587–604. doi: 10.1111/j.1365-2958.2010.07234.x.10.1111/j.1365-2958.2010.07234.xPMC290934220545847Akoumianaki T., Kyrmizi I., Valsecchi I., Gresnigt M.S., Samonis G., Drakos E., Boumpas D., Muszkieta L., Prevost M.C., Kontoyiannis D.P., et al. Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity. Cell Host Microbe. 2016;19:79–90. doi: 10.1016/j.chom.2015.12.002.10.1016/j.chom.2015.12.00226749442Kyrmizi I., Gresnigt M.S., Akoumianaki T., Samonis G., Sidiropoulos P., Boumpas D., Netea M.G., van de Veerdonk F.L., Kontoyiannis D.P., Chamilos G. Corticosteroids block autophagy protein recruitment in Aspergillus fumigatus phagosomes via targeting Dectin-1/Syk kinase signaling. J. Immunol. 2013;191:1287–1299. doi: 10.4049/jimmunol.1300132.10.4049/jimmunol.1300132PMC388310623817424Vellanki S., Billmyre R.B., Lorenzen A., Campbell M., Turner B., Huh E.Y., Heitman J., Lee S.C. A novel resistance pathway for calcineurin inhibitors in the human-pathogenic mucorales Mucor circinelloides. MBio. 2020;11:e02949-19. doi: 10.1128/mBio.02949-19.10.1128/mBio.02949-19PMC698910731992620Navarro-Mendoza M.I., Pérez-Arques C., Murcia L., Martínez-García P., Lax C., Sanchis M., Capilla J., Nicolás F.E., Garre V. Components of a new gene family of ferroxidases involved in virulence are functionally specialized in fungal dimorphism. Sci. Rep. 2018;8:7660. doi: 10.1038/s41598-018-26051-x.10.1038/s41598-018-26051-xPMC595596729769603Shiozaki K., Russell P. Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes Dev. 1996;10:2276–2288. doi: 10.1101/gad.10.18.2276.10.1101/gad.10.18.22768824587Chang Z., Heitman J. Drug-resistant epimutants exhibit organ-specific stability and induction during murine infections caused by the human fungal pathogen Mucor circinelloides. MBio. 2019;10:e02579-19. doi: 10.1128/mBio.02579-19.10.1128/mBio.02579-19PMC683178031690679Trieu T.A., Calo S., Nicolás F.E., Vila A., Moxon S., Dalmay T., Torres-Martínez S., Garre V., Ruiz-Vázquez R.M. A non-canonical RNA silencing pathway promotes mRNA degradation in basal fungi. PLoS Genet. 2015;11:1005168. doi: 10.1371/journal.pgen.1005168.10.1371/journal.pgen.1005168PMC439511925875805Valle-Maldonado M.I., Jácome-Galarza I.E., Díaz-Pérez A.L., Martínez-Cadena G., Campos-García J., Ramírez-Díaz M.I., Reyes-De la Cruz H., Riveros-Rosas H., Díaz-Pérez C., Meza-Carmen V. Phylogenetic analysis of fungal heterotrimeric G protein-encoding genes and their expression during dimorphism in Mucor circinelloides. Fungal Biol. 2015;119:1179–1193. doi: 10.1016/j.funbio.2015.08.009.10.1016/j.funbio.2015.08.00926615741Patiño-Medina J.A., Reyes-Mares N.Y., Valle-Maldonado M.I., Jácome-Galarza I.E., Pérez-Arques C., Nuñez-Anita R.E., Campos-García J., Anaya-Martínez V., Ortiz-Alvarado R., Ramírez-Díaz M.I., et al. Heterotrimeric G-alpha subunits Gpa11 and Gpa12 define a transduction pathway that control spore size and virulence in Mucor circinelloides. PLoS ONE. 2019;14:e0226682. doi: 10.1371/journal.pone.0226682.10.1371/journal.pone.0226682PMC693684931887194Patiño-Medina J.A., Vargas-Tejeda D., Valle-Maldonado M.I., Alejandre-Castañeda V., Jácome-Galarza I.E., Villegas-Moreno J., Nuñez-Anita R.E., Ramírez-Díaz M.I., Ortiz-Alvarado R., Meza-Carmen V. Sporulation on blood serum increases the virulence of Mucor circinelloides. Microb. Pathog. 2019;137:103737. doi: 10.1016/j.micpath.2019.103737.10.1016/j.micpath.2019.10373731513895