Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Structural aberrations involving more than two breakpoints on two or more chromosomes are known as complex chromosomal rearrangements (CCRs). They can reduce fertility through gametogenesis arrest developed due to disrupted chromosomal pairing in the pachytene stage. We present a familial case of two infertile brothers (with azoospermia and cryptozoospermia) and their mother, carriers of an exceptional type of CCR involving chromosomes 1 and 7 and three breakpoints. The aim was to identify whether meiotic disruption was caused by CCR and/or genomic mutations. Additionally, we performed a literature survey for male CCR carriers with reproductive failures. The characterization of the CCR chromosomes and potential genomic aberrations was performed using: G-banding using trypsin and Giemsa staining (GTG banding), fluorescent in situ hybridization (FISH) (including multicolor FISH (mFISH) and bacterial artificial chromosome (BAC)-FISH), and genome-wide array comparative genomic hybridization (aCGH). The CCR description was established as: der(1)(1qter->1q42.3::1p21->1q42.3::7p14.3->7pter), der(7)(1pter->1p2 1::7p14.3->7qter). aCGH revealed three rare genes variants: , , and , which were ruled out due to unlikely biological functions. The aCGH analysis of three breakpoint CCR regions did not reveal copy number variations (CNVs) with biologically plausible genes. Synaptonemal complex evaluation (brother-1; spermatocytes II/oligobiopsy; the silver staining technique) showed incomplete conjugation of the chromosomes. Associations between CCR and the sex chromosomes (by FISH) were not found. A meiotic segregation pattern (brother-2; ejaculated spermatozoa; FISH) revealed 29.21% genetically normal/balanced spermatozoa. The aCGH analysis could not detect smaller intergenic CNVs of few kb or smaller (indels of single exons or few nucleotides). Since chromosomal aberrations frequently do not affect the phenotype of the carrier, in contrast to the negative influence on spermatogenesis, there is an obvious need for genomic sequencing to investigate the point mutations that may be responsible for the differences between the azoospermic and cryptozoospermic phenotypes observed in a family. Progeny from the same parents provide a unique opportunity to discover a novel genomic background of male infertility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349667 | PMC |
http://dx.doi.org/10.3390/ijms21124559 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!