The model food in this study known as mashed potato consisted of ribose (1.0%) and lysine (0.5%) to induce browning via Maillard reaction products. Mashed potato was processed by Coaxially Induced Microwave Pasteurization and Sterilization (CiMPAS) regime to generate an F0 of 6-8 min and analysis of the post-processed food was done in two ways, which included by measuring the color changes and using hyperspectral data acquisition. For visualizing the spectra of each tray in comparison with the control sample (raw mashed-potato), the mean spectrum (i.e., mean of region of interest) of each tray, as well as the control sample, was extracted and then fed to the fitted principal component analysis model and the results coincided with those post hoc analysis of the average reflectance values. Despite the presence of a visual difference in browning, the Lightness (L) values were not significantly ( < 0.05) different to detect a cold spot among a range of 12 processed samples. At the same time, hyperspectral imaging could identify the colder trays among the 12 samples from one batch of microwave sterilization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7353656PMC
http://dx.doi.org/10.3390/foods9060837DOI Listing

Publication Analysis

Top Keywords

hyperspectral imaging
8
model food
8
processed coaxially
8
coaxially induced
8
induced microwave
8
microwave pasteurization
8
pasteurization sterilization
8
mashed potato
8
control sample
8
identification cold
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!