Live visualization of influenza A virus (IAV) structural proteins during viral infection in cells is highly sought objective to study different aspects of the viral replication cycle. To achieve this, we engineered an IAV to express a Tetra Cysteine tag (TC tag) from hemagglutinin (HA), which allows intracellular labeling of the engineered HA protein with biarsenic dyes and subsequent fluorescence detection. Using such constructs, we rescued a recombinant IAV with TC tag inserted in HA, in A/Puerto Rico/8/1934(H1N1) background (HA-TC). This recombinant HA-TC tag reporter IAV was replication-competent; however, as compared to wild type PR8 IAV, it was attenuated in multicycle replication. We confirmed expression of TC tag and biarsenical labeling of HA by immunofluorescence assay in cells infected with an HA-TC tag reporter IAV. Further, we used this reporter virus to visualize HA expression and translocation in IAV infected cells by live confocal imaging. We also tested the utility of the HA-TC IAV in testing chemical inhibitors of the HA translocation. Overall, HA-TC IAV is a versatile tool that will be useful for studying viral life cycle events, virus-host interactions, and anti-viral testing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7354568PMC
http://dx.doi.org/10.3390/v12060687DOI Listing

Publication Analysis

Top Keywords

iav
9
live visualization
8
influenza virus
8
ha-tc tag
8
tag reporter
8
reporter iav
8
ha-tc iav
8
tag
6
ha-tc
5
visualization hemagglutinin
4

Similar Publications

Fluorofurimazine, a novel NanoLuc substrate, enhances real-time tracking of influenza A virus infection without altering pathogenicity in mice.

Microbiol Spectr

January 2025

Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA.

Unlabelled: Bioluminescence imaging (BLI) using engineered bioluminescent viruses has emerged as a powerful tool for real-time, noninvasive monitoring of viral replication in living animals. While traditional luciferase-based systems, such as firefly luciferase, have been widely used, the NanoLuc luciferase system offers distinct advantages, including its significantly smaller gene size, increased brightness, and independence from ATP as a cofactor, allowing for extracellular detection. However, the utility of NanoLuc has been limited by its traditional substrate, furimazine, which exhibits poor water solubility and potential cytotoxicity.

View Article and Find Full Text PDF

Background: Qi pi pill (QPP), which contains Renshen, Baizhu, Fuling, Gancao, Chenpi, Shanyao, Lianzi, Shanzha, Liushenqu, Maiya, and Zexie, was recommended for preventing and treating COVID-19 in Shandong Province (China). However, the mechanism by which QPP treats infectious diseases remains unclear. This study aims to investigate the therapeutic effect of QPP in vitro and on acute influenza infection in mice, exploring its mechanism of action against influenza A virus (IAV).

View Article and Find Full Text PDF

HDAC1 and HDAC2 Are Involved in Influenza A Virus-Induced Nuclear Translocation of Ectopically Expressed STAT3-GFP.

Viruses

December 2024

Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.

Influenza A virus (IAV) remains a pandemic threat. Particularly, the evolution and increased interspecies and intercontinental transmission of avian IAV H5N1 subtype highlight the importance of continuously studying the IAV and identifying the determinants of its pathogenesis. Host innate antiviral response is the first line of defense against IAV infection, and the transcription factor, the signal transducer and activator of transcription 3 (STAT3), has emerged as a critical component of this response.

View Article and Find Full Text PDF

Advances and Challenges in Antiviral Development for Respiratory Viruses.

Pathogens

December 2024

Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico.

The development of antivirals for respiratory viruses has advanced markedly in response to the growing threat of pathogens such as Influenzavirus (IAV), respiratory syncytial virus (RSV), and SARS-CoV-2. This article reviews the advances and challenges in this field, highlighting therapeutic strategies that target critical stages of the viral replication cycle, including inhibitors of viral entry, replication, and assembly. In addition, innovative approaches such as inhibiting host cellular proteins to reduce viral resistance and repurposing existing drugs are explored, using advanced bioinformatics tools that optimize the identification of antiviral candidates.

View Article and Find Full Text PDF

Proteomic Analysis of Differentially Expressed Proteins in A549 Cells Infected with H9N2 Avian Influenza Virus.

Int J Mol Sci

January 2025

Fujian Province Joint Laboratory of Animal Pathogen Prevention and Control of the "Belt and Road", College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Influenza A viruses (IAVs) are highly contagious pathogens that cause zoonotic disease with limited availability of antiviral therapies, presenting ongoing challenges to both public health and the livestock industry. Unveiling host proteins that are crucial to the IAV life cycle can help clarify mechanisms of viral replication and identify potential targets for developing alternative host-directed therapies. Using a four-dimensional (4D), label-free methodology coupled with bioinformatics analysis, we analyzed the expression patterns of cellular proteins that changed following H9N2 virus infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!