The aim of this work was to evaluate the effectiveness of neat chitosan (CS) and its derivatives with 2-acrylamido-2-methyl-1-propanesulfonic acid (AAMPS) and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (MEDSP) as appropriate nanocarriers for the simultaneous ocular administration of dexamethasone sodium phosphate (DxP) and chloramphenicol (CHL). The derivatives CS-AAMPS and CS-MEDSP have been synthesized by free-radical polymerization and their structure has been proved by Fourier-Transformed Infrared Spectroscopy (FT-IR) spectroscopy. Both derivatives exhibited low cytotoxicity, enhanced mucoadhesive properties and antimicrobial activity against () and (). Encapsulation was performed via ionic crosslinking gelation using sodium tripolyphosphate (TPP) as the crosslinking agent. Dynamic light scattering measurements (DLS) showed that the prepared nanoparticles had bimodal distribution and sizes ranging from 50-200 nm and 300-800 nm. Drugs were encapsulated in their crystalline (CHL) or amorphous (DexSP) form inside nanoparticles and their release rate was dependent on the used polymer. The CHL dissolution rate was substantially enhanced compared to the neat drug and the release time was extended up to 7 days. The release rate of DexSP was much faster than that of CHL and was prolonged up to 3 days. Drug release modeling unveiled that diffusion is the main release mechanism for both drugs. Both prepared derivatives and their drug-loaded nanoparticles could be used for extended and simultaneous ocular release formulations of DexSP and CHL drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7356116 | PMC |
http://dx.doi.org/10.3390/pharmaceutics12060594 | DOI Listing |
J Nanobiotechnology
December 2024
Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, JS, 226001, P. R. China.
Peripheral nerve injury poses a significant challenge to the nervous system's regenerative capacity. We previously described a novel approach to construct a chitosan/silk fibroin nerve graft with skin-derived precursor-induced Schwann cells (SKP-SCs). This graft has been shown to promote sciatic nerve regeneration and functional restoration to a level comparable to that achieved by autologous nerve grafts, as evidenced by behavioral, histological, and electrophysiological assessments.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, National and Local United Engineering Laboratory of Integrative Utilization of Eucommia ulmoides, Jishou University, Zhangjiajie 427000, China; College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China. Electronic address:
Plant-derived antibacterial agents are increasingly pivotal in mitigating the escalating threat posed by pathogenic microorganisms. Dihydromyricetin (DMY), a plant bioactive compound prevalent in Ampelopsis grossedentata, exhibits remarkable antibacterial properties. However, its poor solubility in water significantly hinders its application in antibacterial therapies, necessitating the exploration of suitable carriers for the loading and sustained release of DMY.
View Article and Find Full Text PDFTissue Cell
December 2024
Department of Minimally Invasive Intervention, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China. Electronic address:
Objective: Cholangiocarcinoma (CCA) presents a therapeutic challenge due to its aggressiveness and poor survival rates. This study introduces an approach using tissue inhibitor of metalloproteinase 2 (TIMP2)-enriched bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exo) encapsulated in chitosan hydrogels (CS), intending to provide novel insight into the CCA treatment.
Methods: BMSC-Exo was characterized by using TEM, nanoparticle tracking analysis, and western blotting.
Int J Biol Macromol
December 2024
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China. Electronic address:
Tissue engineering presents promising avenues for addressing issues related to tissue defects and regenerative medicine. However, the translational efficacy of tissue engineering in clinical settings remains limited, primarily due to the inadequate survival rates of implanted tissue scaffolds. This is attributed to the grafts' inability to adequately supply oxygen and their dependence on the diffusion of oxygen from surrounding tissues for tissue regeneration.
View Article and Find Full Text PDFInt J Cosmet Sci
December 2024
Normandie Univ, URCOM UR 3221, Université Le Havre Normandi, Le Havre, France.
Objective: Vitamin E, in the form of α-tocopherol (TOCO), is an essential lipophilic antioxidant widely used in topical formulations. However, incorporating pure TOCO into skincare products poses significant challenges due to its limited solubility and high sensitivity to heat, light and oxidation. The present cross-sectional study aimed to innovate by encapsulating TOCO using non-animal sustainable biopolymers through complex coacervation and to investigate the interaction of these coacervates with cosmetic emulsions, focusing on their impact on the emulsions' physicochemical properties and stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!