Multi-drug-resistant (MDR) infections and their devastating consequences constitute a global problem and a constant threat to public health with immense costs for their treatment. Early identification of the pathogen and its antibiotic resistance profile is crucial for a favorable outcome. Given the fact that more than 24 hours are usually required to perform common antibiotic resistance tests after the sample collection, the implementation of machine learning methods could be of significant help in selecting empirical antibiotic treatment based only on the sample type, Gram stain, and patient's basic characteristics. In this paper, five machine learning (ML) algorithms have been tested to determine antibiotic susceptibility predictions using simple demographic data of the patients, as well as culture results and antibiotic susceptibility tests. Implementing ML algorithms to antimicrobial susceptibility data may offer insightful antibiotic susceptibility predictions to assist clinicians in decision-making regarding empirical treatment.

Download full-text PDF

Source
http://dx.doi.org/10.3233/SHTI200497DOI Listing

Publication Analysis

Top Keywords

machine learning
12
antibiotic susceptibility
12
learning algorithms
8
empirical treatment
8
antibiotic resistance
8
susceptibility predictions
8
antibiotic
6
algorithms predict
4
predict antimicrobial
4
antimicrobial resistance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!