Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The automated detection of adverse events in medical records might be a cost-effective solution for patient safety management or pharmacovigilance. Our group proposed an information extraction algorithm (IEA) for detecting adverse events in neurosurgery using documents written in a natural rich-in-morphology language. In this paper, we challenge to optimize and evaluate its performance for the detection of any extremity muscle weakness in clinical texts. Our algorithm shows the accuracy of 0.96 and ROC AUC = 0.96 and might be easily implemented in other medical domains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/SHTI200492 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!