Electrochemical Properties of Sn/C Nanoparticles Fabricated by Pulse Wire Evaporation for Lithium Secondary Batteries.

J Nanosci Nanotechnol

Department of Materials Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University 501, Jinju-daero, Jinju, Gyeongnam 660-701, Korea.

Published: November 2020

In this work, bare Sn and carbon-coated Sn nanoparticles were prepared by a pulsed wire evaporation process. The effect of binder and pressing ratio on electrochemical properties of Sn/C composite electrodes was investigated to enhance the structural stability of Sn anode. The electrode containing the polyamide-imide (PAI) binder with high tensile strength (52 MPa) exhibited higher coulombic efficiency and better cycle performance compared to the electrode with the conventional polyvinylidene fluoride (PVdF) binder. The 5%-pressed Sn/C electrode with the proper porosity in the electrode demonstrated the best cycle performance corresponding to 45% of capacity retention ratio until 100 cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2020.18832DOI Listing

Publication Analysis

Top Keywords

electrochemical properties
8
properties sn/c
8
wire evaporation
8
cycle performance
8
sn/c nanoparticles
4
nanoparticles fabricated
4
fabricated pulse
4
pulse wire
4
evaporation lithium
4
lithium secondary
4

Similar Publications

Effects of Phenoxazine Chromophore on Optical, Electrochemical and Electrochromic Behaviors of Carbazole-Thiophene Derivatives.

Polymers (Basel)

December 2024

Henan Key Laboratory of Rare Earth Functional Materials, The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001, China.

Phenoxazine, as an organic-small-molecule chromophore, has attracted much attention for its potential electrochromic applications recently. To develop appealing materials, phenoxazine chromophores were introduced at the N-position of carbazole-thiophene pigment, yielding two novel monomers (DTCP and DDCP), whose chemical structures were characterized by NMR, HRMS and FTIR. The results of the optical property study indicate that little influence could be observed in the presence of the phenoxazine chromophore.

View Article and Find Full Text PDF

Difficult-to-cut titanium matrix composites (TMCs) are widely used in the aerospace, automotive, and defense sectors due to their excellent physical properties. Electrochemical mill grinding (ECMG) can achieve the processing effects of electrochemical milling and electrochemical grinding using the same tool, which has the potential to complete the rough and finish machining of TMCs in succession. However, in the rough machining stage, the bottom of the slot becomes concave due to the inevitable stray corrosion, leading to poor flatness, which increases the machining allowance for subsequent finish machining.

View Article and Find Full Text PDF

As a sustainable alternative technology to the cost- and energy-intensive Haber-Bosch method, electrochemical nitrogen (N) reduction offers direct conversion of N to NH under ambient conditions. Direct use of noble metals or non-noble metals as electrocatalytic materials results in unsatisfactory electrocatalytic properties because of their low electrical conductivity and stability. Herein, three-dimensional flexible carbon nanofiber (CNF/TiO@CoS) nanostructures were prepared on the surface of CNF by using electrospinning, a hydrothermal method, and in situ growth.

View Article and Find Full Text PDF

The structural adhesive bonding of aluminum is widely used in the aircraft and automotive industries. The surface preparation of aluminum prior to adhesive bonding plays a significant role in improving the bonding strength. Surface cleanliness, surface roughness, and surface chemistry can be controlled, primarily, by proper surface treatment methods.

View Article and Find Full Text PDF

Corrosion Properties of Cold-Sprayed CrC-25(Ni20Cr) Coatings After Heat Treatment.

Materials (Basel)

December 2024

Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland.

The corrosion resistance of a CrC-25(Ni20Cr) cermet coating applied to an Al7075 substrate (CrC-25(Ni20Cr)/Al7075) was investigated. The coating was produced using a cold spraying (CS) method. The main aim of the research was to determine the effect of heat treatment on the properties of cermet coatings on the Al7075 substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!