Here, red phosphorescent platinum(II) complexes based on tetradentate pyridine-containing lig-ands are studied. To investigate their electroluminescent properties, multilayer devices were fabricated in the following sequence; ITO (180 nm)/4,4',4″-Tris[2-naphthyl(phenyl)amino]triphenylamine (2-TNATA) (30 nm)/, '-di(1-naphthyl)-,'-diphenyl-1,1'-biphenyl)4,4'-diamine (NPB) (20 nm)/ Tris(4-carbazoyl-9-ylphenyl)amine (TCTA) (10 nm)/4,4'-Bis(-carbazolyl)-1,1'-biphenyl (CBP) (20 nm)/Platinum(II) complex (20 nm)/1,3,5-Tris(1-Phenyl-1H-benzimidazol-2-yl)benzene) (TPBi) (40 nm)/Liq (2 nm)/Al (100 nm). In particularly, a device using platinum(II) complex based on -(3,5-di-tert-butylphenyl)-3-(pyridin-2-yl)--(3-(pyridin-2-yl)phenyl)benzenamineligand showed the efficient red emission, with a luminous efficiency, power efficiency, and external quantum efficiency of, and the Commission International de LEclairge (CIE) coordinates of 27.26 cd/A, 10.54 lm/W, 8.50% at 20 mA/cm², and (0.65, 0.33) at 11.0 V, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2020.18758 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
NCL: CSIR National Chemical Laboratory, Organic Chemistry, Dr. Homi Bhabha Road, 411008, Pune, INDIA.
The cutouts of graphene sheets, particularly those with a nonplanar topology, present vast opportunities for advancement. Even a slight deviation from the planar structure can lead to intriguing (chiro)optical features for helically twisted nanographenes. In this context, we introduce two regioisomeric π-extended nanographenes that exhibit distinct excited-state characteristics.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
Regulating strategies for long persistent luminescence (LPL) are always in high demand. Herein, a series of coordination polymers (CPs) (SUST-Z1-Z4) are fabricated using 1,10-phenanthroline derivatives involving different substituents (─H, ─CH, ─Cl, and ─Br) as ligands, respectively. Crystallographic data demonstrate that these CPs adopt alternating arrangements of cadmium halide chains and π-conjugated ligands.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Analytical & Testing Center, Chengdu, 610064, China.
Aqueous-phase phosphors are of utmost importance for a myriad of applications. However, the emission wavelengths of the current aqueous organic room-temperature phosphorescent (RTP) materials are limited to green and red bands, while the blue part is rarely reported, thus limiting the development of a full-color RTP system. Theoretically, carboxylated benzene is expected to be blue phosphorescence-emissive, but only green phosphorescence is observed in solid, due to the strong intermolecular π-π stacking that decreases the energy gap.
View Article and Find Full Text PDFPhotochem Photobiol
December 2024
Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
Pyranoflavylium cations are synthetic analogues of pyranoanthocyanins, the much more color-stable compounds that are formed spontaneously from grape anthocyanins during the maturation of red wines. In the present work, our studies of the photophysical properties of pyranoanthocyanin analogues are extended to include nine pyranoflavylium cations substituted with one or two bromo and/or iodo heavy atoms. The room temperature fluorescence, 77 K fluorescence and phosphorescence, triplet formation in solution, and sensitized singlet oxygen formation, with excited state acidity suppressed by the addition of trifluoroacetic acid, are compared to those of similar pyranoflavylium cations that do not contain a heavy atom.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China.
Materials with red room-temperature phosphorescence (RTP) derived from sustainable resources are crucial but rarely reported. Here, we produced red RTP materials from lignin. Lignin was covalently modified with Upy (1-(6-isocyanatohexyl)-3-(6-methyl-4-oxo-1,4-dihydropyrimidin-2-yl) urea) to obtain Lig-Upy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!