A shingled module fabricated using electrically conductive adhesive (ECA) can increase the light-receiving area and provide greater power than a conventional module fabricated using solder-coated copper ribbons. However, several issues such as damage from laser cutting and poor contact by the conductive paste may arise. In this study, a 15.675 × 3.1 cm² c-Si cut cell was fabricated using a nanosecond green laser, and cell bonding was performed using ECA to fabricate shingled modules. If the laser process was performed with high speed and low power, there was insufficient depth for cut cell fabrication. This was because the laser only had a thermal effect on the surface. The cell was processed to a depth of approximately 46 m by the laser, and it could be seen that the laser cutting proceeded smoothly when the laser process affected more than 25% of the wafer thickness. The cut cell was bonded by ECA, and the process conditions were changed. The highest efficiency of 20.27% was obtained for a cell bonded under the conditions of a curing time of 60 s and curing temperature of 150°C. As a result, the efficiency of the bonded cell was increased by approximately 2.67% compared to the efficiency of the conventional cut cell. This was because the shadow loss due to the busbar was reduced, increasing the active area of the module by eliminating the busbar from the illuminated area.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2020.18763DOI Listing

Publication Analysis

Top Keywords

cut cell
16
shingled modules
8
module fabricated
8
laser cutting
8
cell
8
laser process
8
cell bonded
8
laser
7
electrical characteristics
4
characteristics analysis
4

Similar Publications

Porcine reproductive and respiratory syndrome virus (PRRSV) remains a major concern for swine health. Isolating PRRSV is essential for identifying infectious viruses and for vaccine formulation. This study evaluated the potential of using tongue fluid (TF) from perinatal piglet mortalities for PRRSV isolation.

View Article and Find Full Text PDF

CXCL-10 in Cerebrospinal Fluid Detects Neuroinflammation in HTLV-1-Associated Myelopathy with High Accuracy.

Viruses

January 2025

Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil.

Background And Objectives: HTLV-1-associated myelopathy (HAM) is a chronic progressive inflammatory disease of the spinal cord. This study assesses the diagnostic accuracy of the neuroinflammatory biomarkers neopterin and cysteine-X-cysteine motif chemokine ligand 10 (CXCL-10) in cerebrospinal fluid (CSF) for HAM.

Methods: CSF samples from 75 patients with neurological disorders-33 with HAM (Group A), 19 HTLV-1-seronegative with other neuroinflammatory diseases (Group B), and 23 HTLV-1-seronegative with non-neuroinflammatory diseases (Group C)-were retrospectively evaluated.

View Article and Find Full Text PDF

Cell wall extensibility is a key biophysical characteristic that defines the rate of plant cell growth. It depends on the wall structure and is controlled by numerous proteins that cut and/or (re)form links between the wall constituents. Cell wall extensibility is currently estimated by different in vitro biomechanical tests.

View Article and Find Full Text PDF

The Fontan operation has become the primary palliative treatment for patients with a functionally univentricular heart. The population of patients with Fontan circulation is constantly growing and aging. As the number of Fontan patients surviving into adulthood increases, there is a clear need for research on how best to follow these patients and manage their complications.

View Article and Find Full Text PDF

Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!