AI Article Synopsis

  • The complexity of pathway engineering requires effective screening methods to identify useful phenotypes, especially when these phenotypes are not directly tied to growth or fluorescence.
  • Developing yeast intracellular staining (yICS) allows for the detection of intracellular proteins using fluorescent antibodies without affecting protein function, thereby improving analysis via flow cytometry.
  • The yICS method has shown successful quantification of multiple key enzymes in yeast, significantly enhancing the efficiency of clonal selection and ultimately leading to a notable increase in enzyme activity, which demonstrates its potential for advancing pathway engineering and related applications.

Article Abstract

The complexities of pathway engineering necessitate screening libraries to discover phenotypes of interest. However, this approach is challenging when desirable phenotypes cannot be directly linked to growth advantages or fluorescence. In these cases, the ability to rapidly quantify intracellular proteins in the pathway of interest is critical to expedite the clonal selection process. While remains a common host for pathway engineering, current approaches for intracellular protein detection in yeast either have low throughput, can interfere with protein function, or lack the ability to detect multiple proteins simultaneously. To fill this need, we developed yeast intracellular staining (yICS) that enables fluorescent antibodies to access intracellular compartments of yeast cells while maintaining their cellular integrity for analysis by flow cytometry. Using the housekeeping proteins β actin and glyceraldehyde 3-phophate dehydrogenase (GAPDH) as targets for yICS, we demonstrated for the first time successful antibody-based flow cytometric detection of yeast intracellular proteins with no modification. Further, yICS characterization of a recombinant d-xylose assimilation pathway showed 3-plexed, quantitative detection of the xylose reductase (XR), xylitol dehydrogenase (XDH), and xylulokinase (XK) enzymes each fused with a small (6-10 amino acids) tag, revealing distinct enzyme expression profiles between plasmid-based and genome-integrated expression approaches. As a result of its high-throughput and quantitative capability, yICS enabled rapid screening of a library created from CRISPR-mediated XDH integration into the yeast δ site, identifying rare (1%) clones that led to an 8.4-fold increase in XDH activity. These results demonstrate the utility of yICS for greatly accelerating pathway engineering efforts, as well as any application where the high-throughput and quantitative detection of intracellular proteins is desired.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.0c00199DOI Listing

Publication Analysis

Top Keywords

intracellular proteins
16
pathway engineering
16
yeast intracellular
12
high-throughput quantitative
12
quantitative detection
12
intracellular staining
8
staining yics
8
detection intracellular
8
flow cytometry
8
detection yeast
8

Similar Publications

Neurotransmitter release is triggered in microseconds by Ca-binding to the Synaptotagmin-1 C-domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 CB domain to SNARE complexes through a "primary interface" comprising two regions (I and II). The Synaptotagmin-1 Ca-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers, or helping bridge the membranes, but SNARE complex binding through the primary interface orients the Ca-binding loops away from the fusion site, hindering these putative activities.

View Article and Find Full Text PDF

is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.

View Article and Find Full Text PDF

ANAC044 orchestrates mitochondrial stress signaling to trigger iron-induced stem cell death in root meristems.

Proc Natl Acad Sci U S A

January 2025

Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.

View Article and Find Full Text PDF

Background: The antigen Na-GST-1, expressed by the hookworm Necator americanus, plays crucial biochemical roles in parasite survival. This study explores the development of mRNA vaccine candidates based on Na-GST-1, building on the success of recombinant Na-GST-1 (rNa-GST-1) protein, currently assessed as a subunit vaccine candidate, which has shown promise in preclinical and clinical studies.

Methodology/findings: By leveraging the flexible design of RNA vaccines and protein intracellular trafficking signal sequences, we developed three variants of Na-GST-1 as native (cytosolic), secretory, and plasma membrane-anchored (PM) antigens.

View Article and Find Full Text PDF

Most gene therapies exert their actions via manipulation of hepatocytes (parenchymal cells) and the reasons behind the suboptimal performance of synthetic mRNA in non-parenchymal cells (NPC) such as Kupffer cells (KC), and liver macrophages, remain unclear. Here, the spatio-temporal distribution of mRNA encoding enhanced green fluorescent protein (Egfp), siRNA, or both co-encapsulated into lipid nanoparticles (LNP) in the liver in vivo using real-time intravital imaging is investigated. Although both KC and hepatocytes demonstrate comparable high and rapid uptake of mRNA-LNP and siRNA-LNP in vivo, the translation of Egfp mRNA occurs exclusively in hepatocytes during intravital imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!