Purpose: Frameless Gamma Knife stereotactic radiosurgery (SRS) uses a moldable headrest with a thermoplastic mask for patient immobilization. An efficacious headrest is time consuming and difficult to fabricate due to the expertise required to mold the headrest within machine geometrical limitations. The purpose of this study was to design and validate a three-dimensional (3D)-printed headrest for frameless Gamma Knife SRS that can overcome these difficulties.
Materials And Methods: A headrest 3D model designed to fit within the frameless adapter was 3D printed. Dosimetric properties of the 3D-printed headrest and a standard-of-care moldable headrest were compared by delivering a Gamma Knife treatment to an anthropomorphic head phantom fitted with an ionization chamber and radiochromic film. Ionization measurements were compared to assess headrest attenuation and a gamma index was calculated to compare the film dose distributions. A volunteer study was conducted to assess the immobilization efficacy of the 3D-printed headrest compared to the moldable headrest. Five volunteers had their head motion tracked by a surface tracking system while immobilized in each headrest for 20 min. The recorded motion data were used to calculate the average volunteer movement and a paired t-test was performed.
Results: The ionization chamber readings were within 0.55% for the 3D-printed and moldable headrests, and the calculated gamma index showed 98.6% of points within dose difference of 2% and 2 mm distance to agreement for the film measurement. These results demonstrate that the headrests were dosimetrically equivalent within the experimental uncertainties. Average motion (±standard deviation) of the volunteers while immobilized was 1.41 ± 0.43 mm and 1.36 ± 0.51 mm for the 3D-printed and moldable headrests, respectively. The average observed volunteer motion between headrests was not statistically different, based on a P-value of 0.466.
Conclusions: We designed and validated a 3D-printed headrest for immobilizing patients undergoing frameless Gamma Knife SRS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497935 | PMC |
http://dx.doi.org/10.1002/acm2.12956 | DOI Listing |
J Appl Clin Med Phys
August 2023
Department of Radiation Oncology, University of Minnesota, Minneapolis, Minnesota, USA.
Purpose: Patient positioning and immobilization devices are commonly employed in radiation therapy. Unfortunately, cases can arise where the devices need to be reconstructed or improved. This work describes clinical processes to use a planning CT, to design and 3D print immobilization devices for reproducible patient positioning within a clinically feasible time frame when traditional methods can no longer be used or are insufficient.
View Article and Find Full Text PDF3D Print Med
July 2022
Department of Radiation Oncology, Division of Clinical Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
Background: Malignancies of the head and neck region, encompassing cutaneous, mucosal, and sarcomatous histologies, are complex entities to manage, comprising of coordination between surgery, radiation therapy, and systemic therapy. Malignancies of the posterior scalp are particular challenging to treat with radiation therapy, given its irregular contours and anatomy as well as the superficial location of the target volume. Bolus material is commonly used in radiation therapy to ensure that the dose to the skin and subcutaneous tissue is appropriate and adequate, accounting for the buildup effect of megavoltage photon treatment.
View Article and Find Full Text PDFJ Appl Clin Med Phys
October 2020
Département de radio-oncologie, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada.
Purpose: The geometry of an immobilization device such as a headrest can cause undesired computed tomography (CT) artifacts that may affect both volume definition and dosimetry in radiotherapy of the brain. The purpose of this work was to reduce CT artifacts caused by a standard hard plastic hollow radiotherapy headrest. This was to be achieved through design and prototyping of a custom-made head support.
View Article and Find Full Text PDFJ Appl Clin Med Phys
September 2020
Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Purpose: Frameless Gamma Knife stereotactic radiosurgery (SRS) uses a moldable headrest with a thermoplastic mask for patient immobilization. An efficacious headrest is time consuming and difficult to fabricate due to the expertise required to mold the headrest within machine geometrical limitations. The purpose of this study was to design and validate a three-dimensional (3D)-printed headrest for frameless Gamma Knife SRS that can overcome these difficulties.
View Article and Find Full Text PDFNihon Hoshasen Gijutsu Gakkai Zasshi
June 2017
Radiation Technology, Tohoku University Hospital.
Our aim was to investigate the feasibility of a three-dimensional (3D) -printed head-and-neck (HN) immobilization device by comparing its positional accuracy and dosimetric properties with those of a conventional immobilization device (CID). We prepared a 3D-printed immobilization device (3DID) consisting of a mask and headrest with acrylonitrile-butadiene-styrene resin developed from the computed tomography data obtained by imaging a HN phantom. For comparison, a CID comprising a thermoplastic mask and headrest was prepared using the same HN phantom.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!