Diabetic nephropathy (DN), a common cardiovascular disease, has been a global health threat. MicroRNAs (miRNAs) have been proposed to frequently participate in the occurrence and development of DN, however, the role of miR-325-3p in DN remains uncharacterized. Our research aimed to explore the function and mechanism of miR-325-3p in DN. Bioinformatics analysis (Targetscan, http://www.targetscan.org) and a wide range of experiments including RT-qPCR, CCK-8 assay, western blot, luciferase reporter assay, RNA immunoprecipitation (RIP) assays, urine protein and blood glucose assays, histology analysis and morphometric analysis were used to explore the function and mechanism of miR-325-3p and C-C motif chemokine ligand 19 (CCL19). CCL19 could facilitate the progression of DN by inhibiting cell viability and promoting inflammation and fibrosis in HK-2 and HMC cells. In addition, CCL19 was confirmed to be targeted and negatively regulated by miR-325-3p. Rescue assays validated that the impacts of miR-325-3p mimics on the viability, inflammation and fibrosis of HK-2 and HMC cells were recovered by CCL19 overexpression. To sum up, miR-325-3p inhibits renal inflammation and fibrosis by targeting CCL19 in a DN cell model and mice model, implying miR-325-3p as a possible therapeutic target for DN treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1440-1681.13371DOI Listing

Publication Analysis

Top Keywords

inflammation fibrosis
16
mir-325-3p
8
mir-325-3p inhibits
8
inhibits renal
8
renal inflammation
8
fibrosis targeting
8
targeting ccl19
8
diabetic nephropathy
8
explore function
8
function mechanism
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!