Biochar (BC) has been shown to influence microbial denitrification and mitigate soil N2O emissions. However, it is unclear if BC is able to directly stimulate the microbial reduction of N2O to N2. We hypothesized that the ability of BC to lower N2O emissions could be related not only to its ability to store electrons, but to donate them to bacteria that enzymatically reduce N2O. Therefore, we carried out anoxic incubations with Paracoccus denitrificans, known amounts of N2O, and nine contrasting BCs, in the absence of any other electron donor or acceptor. We found a strong and direct correlation between the extent and rates of N2O reduction with BC's EDC/EEC (electron donating capacity/electron exchange capacity). Apart from the redox capacity, other BC properties were found to regulate the BC's ability to increase N2O reduction by P. denitrificans. For this specific BC series, we found that a high H/C and ash content, low surface area and poor lignin feedstocks favored N2O reduction. This provides valuable information for producing tailored BCs with the potential to assist and promote the reduction of N2O in the pursuit of reducing this greenhouse gas emissions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7360485 | PMC |
http://dx.doi.org/10.1093/femsec/fiaa133 | DOI Listing |
Water Res
January 2025
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, Shandong, China. Electronic address:
Sulfur-siderite driven autotrophic denitrification (SSAD) has received increasing attention for nutrient removal in constructed wetlands (CWs). Nevertheless, its effectiveness in simultaneous water purification and greenhouse gases (GHGs) reduction remains obscure. In this study, three vertical flow constructed wetlands (VFCWs), filled with quartz sand (CCW), sulfur (S-CW), and sulfur-siderite mixed substrates (SS-CW), were constructed to investigate the underlying mechanisms of SSAD on water purification enhancement and GHGs reduction.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
Submerged plants (SMPs) play a critical role in improving water quality and reducing NO greenhouse gas emissions. However, freshwater salinization represents a major environmental challenge in aquatic systems. To investigate the impact of salinization on NO emissions, this study conducted indoor mesocosm experiments simulating SMP and nonsubmerged plant (Non_SMP) areas in freshwater lakes.
View Article and Find Full Text PDFJ Psychoactive Drugs
January 2025
Department of Psychology, University of Otago, Ōtepoti/Dunedin, Aotearoa, New Zealand.
Non-medical use of nitrous oxide (NO) is becoming increasingly popular globally, yet little data exists regarding NO in Aotearoa New Zealand. We aimed to explore patterns of use and harm in those who consume NO in Aotearoa, and related knowledge, perceptions and attitudes of those with and without NO experience. A convenience sample of people with NO experience ( = 466) and without ( = 510) completed an online survey about NO.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
Developing a self-sensitized catalyst from earth-abundant elements, capable of efficient light harvesting and electron transfer, is crucial for enhancing the efficacy of CO transformation, a critical step in environmental cleanup and advancing clean energy prospects. Traditional approaches relying on external photosensitizers, comprising 4d/5d metal complexes, involve intermolecular electron transfer, and attachment of photosensitizing arms to the catalyst necessitates intramolecular electron transfer, underscoring the need for a more integrated solution. We report a new Cu(ii) complex, K[CuNDPA] (1[K(18-crown-6)]), bearing a dipyrrin amide-based trianionic tetradentate ligand, NDPA (HL), which is capable of harnessing light energy, despite having a paramagnetic Cu(ii) centre, without any external photosensitizer and photocatalytically reducing CO to CO in acetonitrile : water (19 : 1 v/v) with a TON as high as 1132, a TOF of 566 h and a selectivity of 99%.
View Article and Find Full Text PDFJ Therm Biol
January 2025
Department of Animal and Poultry Nutrition, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. Electronic address:
This study examined the impact of curcumin nanomicelles (CNM) supplementation on transitioning ewes and their offspring. Thirty-two crossbred pregnant ewes [Ile-de-France × (Dalagh × Romanov)], confirmed to carry twins, were randomly assigned to a control group (CTRL) or a treatment group receiving 40 mg of CNM per ewe per day. Supplementation began before and continued after delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!