Animal venoms are rich in hundreds of toxins with extraordinary biological activities. Their exploitation is difficult due to their complexity and the small quantities of venom available from most venomous species. We developed a Venomics approach combining transcriptomic and proteomic characterization of 191 species and identified 20,206 venom toxin sequences. Two complementary production strategies based on solid-phase synthesis and recombinant expression in generated a physical bank of 3597 toxins. Screened on hMC4R, this bank gave an incredible hit rate of 8%. Here, we focus on two novel toxins: N-TRTX-Preg1a, exhibiting an inhibitory cystine knot (ICK) motif, and N-BUTX-Ptr1a, a short scorpion-CSαβ structure. Neither N-TRTX-Preg1a nor N-BUTX-Ptr1a affects ion channels, the known targets of their toxin scaffolds, but binds to four melanocortin receptors with low micromolar affinities and activates the hMC1R/Gs pathway. Phylogenetically, these two toxins form new groups within their respective families and represent novel hMC1R agonists, structurally unrelated to the natural agonists.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.0c00485 | DOI Listing |
J Comput Aided Mol Des
December 2024
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
Conotoxins, being small disulfide-rich and bioactive peptides, manifest notable pharmacological potential and find extensive applications. However, the exploration of conotoxins' vast molecular space using traditional methods is severely limited, necessitating the urgent need of developing novel approaches. Recently, deep learning (DL)-based methods have advanced to the molecular generation of proteins and peptides.
View Article and Find Full Text PDFJ Med Entomol
December 2024
Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
Iran is a biodiversity hotspot of scorpions with 80 recorded species. Thus, scorpion envenomation is a serious public health problem in the country. Here, we used habitat suitability modeling to assess the spatial distribution of scorpions in Iran.
View Article and Find Full Text PDFMed Oncol
December 2024
Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran.
The immune system relies on a delicate balance between attacking harmful pathogens and preserving the body's own tissues, a balance maintained by immune checkpoints. These checkpoints play a critical role in preventing autoimmune diseases by restraining excessive immune responses while allowing the immune system to recognize and destroy abnormal cells, such as tumors. In recent years, immune checkpoint inhibitors (ICIs) have become central to cancer therapy, enabling the immune system to target and eliminate cancer cells that evade detection.
View Article and Find Full Text PDFJ Microencapsul
December 2024
Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
This study aimed to encapsulate an anti-VEGF nanobody (Nb) within niosome nanoparticles (NNPs) to enhance its circulation half life. Key parameters such as encapsulation efficiency, stability, Nb release, cytotoxicity, and cell migration inhibition in HUVEC cells were evaluated, along with pharmacokinetic studies in mice. Nb-loaded NNPs (Nb-NNPs) were successfully prepared with an encapsulation efficiency of 78.
View Article and Find Full Text PDFBreast Cancer Res
December 2024
Computational Biology Branch, National Library of Medicine and Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD, 20892, USA.
Background: Treatment options for triple-negative breast cancer (TNBC) are limited and patients face a poor prognosis. Here, we sought to identify drugs that target TNBC vulnerabilities and understand the biology underlying these responses. We analyzed the Broad Institute DepMap to identify recurrent TNBC vulnerabilities and performed a 45-compound screen on vulnerability-related pathways on a set of up to 8 TNBC cell lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!