Unlabelled: The variability of the clinical course of prostate cancer (PC) indicates the need to find factors that could predict the aggressive potential of neoplasms accounting the biological characteristics of tumor cells. In this context, the role of NANOG, a transcription factor involved in maintaining pluripotency and one of the markers of cancer stem cells (CSCs), is being actively studied today.

Aim: To investigate the level of NANOG mRNA in tumor tissue of patients with PC and to analyze the possibility of its use as a marker of the disease course.

Materials And Methods: The study involved 85 patients with PC of stages II-IV. Morphological and immunohistochemical studies were performed on serial paraffin sections of resected PC using monoclonal antibodies to Ki-67 and androgen receptor. NANOG and miR-214 mRNA expression in tumor cells was analyzed by real-time reverse transcription polymerase chain reaction. The identification of CSCs was performed by double-labeled immunohistochemical method using primary antibodies to CD24 and CD44.

Results: We have revealed notable variability of NANOG mRNA levels in tumor tissue of patients with PC (mean 4.18 ± 0.65 a.u. with individual deviations from 0.11 ± 0.03 a.u. to 15.24 ± 0.36 a.u.). According to NANOG mRNA levels, two groups of the PC patients were delineated: group 1 and group 2, with the average NANOG mRNA levels of 2.12 ± 0.16 a.u., and 8.68 ± 1.24 a.u., respectively. The NANOG mRNA levels in tumor tissue of PC patients of groups 1 and 2 correlated with preoperative serum prostate-specific antigen level (r = 0.58; p < 0.05 and r = 0.64; p < 0.05, respectively), tumor volume (r = 0.42; p < 0.05 and r = 0.72; p < 0.05, respectively), regional lymph node metastases (r = 0.70; p < 0.05 and r = 0.75; p < 0.05, respectively). High NANOG mRNA levels in tumor cells were associated with such molecular and biological features of PC as androgen receptor expression (r = 0.52; p < 0.05), high proliferative activity (r = 0.60; p < 0.05) and the presence of CSC markers (r = 0.75; p < 0.05).

Conclusions: The findings indicate that NANOG is involved in the formation of the PC malignancy and should be further studied as a potential marker for the prediction of the disease course.

Download full-text PDF

Source
http://dx.doi.org/10.32471/exp-oncology.2312-8852.vol-42-no-2.14673DOI Listing

Publication Analysis

Top Keywords

nanog mrna
20
mrna levels
16
tumor tissue
12
tissue patients
12
nanog
8
prostate cancer
8
tumor cells
8
levels tumor
8
tumor
6
mrna
5

Similar Publications

Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.

View Article and Find Full Text PDF

Background: Differentiation of patient-specific induced pluripotent stem cells (iPS) helps researchers to study the individual sensibility to drugs. However, differentiation protocols are time-consuming, and not all tissues have been studied. Few works are available regarding pancreatic exocrine differentiation of iPS cells, and little is known on culturing and cryopreserving these cells.

View Article and Find Full Text PDF

STEMIN and YAP5SA, the future of heart repair?

Exp Biol Med (Maywood)

November 2024

Department of Biology and Biochemistry, University of Houston, Houston, TX, United States.

This review outlines some of the many approaches taken over a decade or more to repair damaged hearts. We showcase the recent breakthroughs in organ regeneration elicited by reprogramming factors OCT3/4, SOX2, KLF4, and C-MYC (OKSM). Transient OKSM transgene expression rejuvenated senescent organs in mice.

View Article and Find Full Text PDF

Loss in Pluripotency Markers in Mesenchymal Stem Cells upon Infection with .

J Microbiol Biotechnol

December 2024

Microbiology and Immunology Department, Faculty of Medicine, Mutah University, Al-Karak, Jordan.

The intracellular pathogen can inflict substantial damage on the host. Notably, Chlamydia infection is acknowledged for its precise modulation of diverse host signaling pathways to ensure cell survival, a phenomenon intricately connected to genetic regulatory changes in host cells. To monitor shifts in gene regulation within Chlamydia-infected cells, we employed mesenchymal stem cells (MSCs) as a naïve, primary cell model.

View Article and Find Full Text PDF

Guss. () is a medicinal plant used for cancer treatment. However, these treatments may be associated with complications that need to be investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!