Understanding the conformation effect on molecular packing, miscibility, and photovoltaic performance is important to open a new avenue for small-molecule acceptor (SMA) design. Herein, two novel acceptor-(donor-acceptor1-donor)-acceptor (A-DA1D-A)-type asymmetric SMAs are developed, namely C-shaped BDTP-4F and S-shaped BTDTP-4F. The BDTP-4F-based polymer solar cells (PSCs) with PM6 as donor, yields a power conversion efficiency (PCE) of 15.24%, significantly higher than that of the BTDTP-4F-based device (13.12%). The better PCE for BDTP-4F-based device is mainly attributed to more balanced charge transport, weaker bimolecular recombination, and more favorable morphology. Additionally, two traditional A-D-A-type SMAs (IDTP-4F and IDTTP-4F) are also synthesized to investigate the conformation effect on morphology and device performance. Different from the device result above, here, IDTP-4F with S-shape conformation outperforms than IDTTP-4F with C-shape conformation. Importantly, it is found that for these two different types of SMA, the better performing binary blend has similar morphological characteristics. Specifically, both PM6:BDTP-4F and PM6:IDTP-4F blend exhibit perfect nanofibril network structure with proper domain size, obvious face-on orientation and enhance donor-acceptor interactions, thereby better device performance. This work indicates tuning molecular conformation plays pivotal role in morphology and device effciciency, shining a light on the molecular design of the SMAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202001942 | DOI Listing |
Acc Chem Res
January 2025
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
ConspectusSymmetry is a pervasive phenomenon spanning diverse fields, from art and architecture to mathematics and science. In the scientific realms, symmetry reveals fundamental laws, while symmetry breaking─the collapse of certain symmetry─is the underlying cause of phenomena. Research on symmetry and symmetry breaking consistently provides valuable insights across disciplines, from parity violation in physics to the origin of homochirality in biology.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
South China University of Technology, South China Advanced Institute for Soft Matter Science and Technology, South China Advanced Institute for Soft Matter Science and Technology, 510640, Guangzhou, CHINA.
The precise engineering of microporosity is challenging due to the interference at sub-nm scale from unexpected structural flexibility and molecular packing. Herein, the concept of topological supramolecular complexation is proposed for the feasible fabrication of hierarchical microporosity with broad tunability in amorphous form. The 2.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
IITH: Indian Institute of Technology Hyderabad, Chemistry, Kandi, Sangaredddy, 502285, INDIA.
A squaramide-based monomer, designed for topochemical azide-alkyne cycloaddition (TAAC) polymerization, crystallizes as two polymorphs, M1 and M2, both having crystal packing suitable for topochemical polymerization. The hydrogen-bonding between squaramide units bias the molecular organization in both the polymorphs. 3D packing of H-bonded stacks of monomer lead to juxtaposition of azide and alkyne units of adjacent molecules in a transition-state-like arrangement for their regiospecific cycloaddition reaction.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.
Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Yingbin Road No.688, Jinhua, 321004, P. R. China.
Polycyclic multiple resonance (MR) molecules reveal narrowband emission, making them very promising emitters for high color purity display. Nevertheless, they still have challenges such as aggregation-induced emission quenching and spectral broadening. Overcoming these obstacles requires an in-depth understanding of the correlations among the alterations in their geometries, packing structures, and molecular vibrations and their corresponding changes in their photoluminescence (PL) properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!