A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparative transcriptomic analysis of resistant and susceptible tea cultivars in response to Empoasca onukii (Matsuda) damage. | LitMetric

Transcriptomic studies in resistant and susceptible tea cultivars have been performed to reveal the different defense molecular mechanisms of tea after E. onukii feeding. The molecular mechanism by which tea plants respond to small green leafhopper Empoasca onukii (Matsuda) damage is unclear. Using the resistant tea plant cultivar Juyan (JY) and the susceptible tea plant cultivar Enbiao (EB) as materials, this study performed RNA-seq on tea leaf samples collected at three time points (6 h, 12 h, 24 h) during exposure of the plants to leafhopper to reveal the molecular mechanisms that are activated in susceptible and resistant tea plant cultivars in response to leafhopper damage. The numbers of DEGs in the susceptible tea cultivar during early (6 h) and late (24 h) stages of leafhopper induction were higher than those in the resistant cultivar at the same time points. The stress responses to leafhopper were most intense at 12 h in both tea cultivars. Pathway enrichment analysis showed that most up-regulated DEGs and their related metabolic pathways were similar in the two tea cultivars. However, during the early stage of leafhopper induction (6 h), jasmonic acid (JA)-related genes were significantly up-regulated in the resistant cultivar. The terpenoid biosynthetic pathway and the α-linolenic acid metabolic pathway were activated earlier in the resistant cultivar and remained activated until the late stage of leafhopper damage. Our results confirmed that after leafhopper damage, the resistant tea cultivar activated its defense responses earlier than the susceptible cultivar, and these defense responses were mainly related to terpenoid metabolism and JA biosynthetic pathway. The results provide important clues for further studies on resistance strategy of tea plants to pest.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-020-03407-0DOI Listing

Publication Analysis

Top Keywords

susceptible tea
16
tea cultivars
16
tea
13
resistant tea
12
tea plant
12
leafhopper damage
12
resistant cultivar
12
resistant
8
resistant susceptible
8
cultivars response
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!