Most species of moths use a female-produced sex pheromone to bring mates together. Typically, sex pheromone is synthesized in a specialized gland and released during the behavior of "calling", in which the ovipositor and gland are extruded, allowing pheromone to evaporate. Although there has been much study on how a gland makes specific pheromone components, we know relatively little about how it actually functions with regard to synthesis, storage and release. In this paper, we investigated three aspects of gland function in the noctuid moth Chloridea virescens (Fabricius): (i) whether translocation of pheromone from site of synthesis to release is dependent on calling or ovipositor movement, (ii) whether pheromone synthesis rate limits release and (iii) how intermittent calling (observed in this and other species) might affect the dynamics of release rate. Firstly, by manipulating the gland to simulate calling (extruded) or non-calling (retracted), we showed that pheromone translocation occurred regardless of whether the gland was retracted or extruded. Secondly, by manipulating pheromone production, we found that females that produced more pheromone had higher release rates. It was especially noticeable that females had a higher release rate at the start of calling, which dropped rapidly and leveled off over time. Together, these data suggest that intermittent calling in C. virescens (and other species) may function to allow females to replenish pheromone stores on the gland surface between calling bouts, so that brief, high release rates occur at the start of a calling bout; thus, potentially increasing a female's chances of attracting a mate.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10886-020-01198-yDOI Listing

Publication Analysis

Top Keywords

pheromone
12
pheromone synthesis
8
gland
8
release
8
moth chloridea
8
chloridea virescens
8
virescens species
8
sex pheromone
8
intermittent calling
8
release rate
8

Similar Publications

Roles for the canonical polarity machinery in the establishment of polarity in budding yeast spores.

Mol Biol Cell

January 2025

Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America.

The yeast buds at sites pre-determined by cortical landmarks deposited during prior budding. During mating between haploid cells in the lab, external pheromone cues override the cortical landmarks to drive polarization and cell fusion. By contrast, in haploid gametes (called spores) produced by meiosis, a pre-determined polarity site drives initial polarized morphogenesis independent of mating partner location.

View Article and Find Full Text PDF

Is Drosophila Larval Competition Involved in Incipient Speciation?

J Chem Ecol

January 2025

Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France.

Geographical, ethological, temporal and ecological barriers can affect interbreeding between populations deriving from an ancestral population, this progressively leading to speciation. A rare case of incipient speciation currently occurs between Drosophila melanogaster populations sampled in Zimbabwe (Z) and all other populations (M). This phenomenon was initially characterized by Z females refusing to mate with M males.

View Article and Find Full Text PDF

The identification of sex pheromones in native New Zealand moths has been limited, largely due to their minimal pest impact on agricultural ecosystems. The kōwhai moth, Uresiphita polygonalis maorialis, a native crambid, is known for its herbivory on Sophora spp. and Lupinus arboreus leaves.

View Article and Find Full Text PDF

Isolation and characterization of haploid heterothallic beer yeasts.

Appl Microbiol Biotechnol

January 2025

Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany.

Improving ale or lager yeasts by conventional breeding is a non-trivial task. Domestication of lager yeasts, which are hybrids between Saccharomyces cerevisiae and Saccharomyces eubayanus, has led to evolved strains with severely reduced or abolished sexual reproduction capabilities, due to, e.g.

View Article and Find Full Text PDF

Characterization of the ligand-binding properties of odorant-binding protein 38 from when interacting with soybean volatiles.

Front Physiol

January 2025

Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Innovation Center of Hebei Province, International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, China.

Background: (Fabricius) (Hemiptera: Alydidae) is a major soybean pest throughout East Asia that relies on its advanced olfactory system for the perception of plant-derived volatile compounds and aggregation pheromones for conspecific and host plant localization. Odorant binding proteins (OBPs) facilitate the transport of odorant compounds across the sensillum lymph within the insect olfactory system, enabling their interaction with odorant receptors (ORs).

Methods: Real-time quantitative PCR (qRT-PCR) analyses, fluorescence-based competitive binding assays, and molecular docking analyses were applied to assess the expression and ligand-binding properties of OBP38 from .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!