As a widely used cell culture supplement, fetal bovine serum (FBS) harbor high content of growth, proliferation, and adhesion factors. However, high cost, bio-safety, possible xenogeneic agent transmission, finite accessible, and ethical controversy are major obstacles that discourage the use of this additive. Accordingly, novel alternatives have been proposed with various pros and cons. Still, caution should be taken in choosing suitable substitute given that the alteration in the main aspects of cultured cells can be biased the consequences of clinical applications. Herein, the authors evaluated the impact of cord blood serum harvesting by hydroxyethyl starch (CBS-HES), as an enriched source of growth factors, on the basic mesenchymal stem cells (MSCs) characteristics. In the present experiment, umbilical cord-derived MSCs were isolated and continuously nourished with Dulbecco's Modified Eagle Medium containing either 10, 15, and 20% CBS-HES or FBSs to compare their morphology, immunophenotype, growth and proliferation rate, death rate, cell cycle, and gene expression profiles. Although all enriched media supported the expansion of MSCs with comparable morphology, cell surface markers, death rate, c-MYC and p16 expression, and growth rate, CBS-HES treated cells significantly (P < 0.05) expressed more hTERT gene in a concentration-dependent manner. Yet no significant shift was observed in the cell cycle of cultured cells using the same concentrations of additives, a finding which further confirmed by Ki-67 immunostaining. CBS-HES as an available and affordable additive, seems to be an optimal, relatively safe, and promising FBS alternative for cultivation, propagation, and subsequent clinical applications of MSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450036PMC
http://dx.doi.org/10.1007/s10616-020-00404-9DOI Listing

Publication Analysis

Top Keywords

cord blood
8
blood serum
8
serum harvesting
8
harvesting hydroxyethyl
8
hydroxyethyl starch
8
fetal bovine
8
bovine serum
8
umbilical cord-derived
8
mesenchymal stem
8
stem cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!