Blood-brain barrier (BBB) breakdown can disrupt nutrient supply and waste removal, which affects neuronal functioning. Currently, dynamic contrast-enhanced (DCE) MRI is the preferred in-vivo method to quantify BBB leakage. Dedicated DCE MRI studies in normal aging individuals are lacking, which could hamper value estimation and interpretation of leakage rate in pathological conditions. Therefore, we applied DCE MRI to investigate the association between BBB disruption and age in a healthy sample. Fifty-seven cognitively and neurologically healthy, middle-aged to older participants (mean age: 66 years, range: 47-91 years) underwent MRI, including DCE MRI with intravenous injection of a gadolinium-based contrast agent. Pharmacokinetic modeling was applied to contrast concentration time-curves to estimate BBB leakage rate in each voxel. Subsequently, leakage rate was calculated in the white and gray matter, and primary (basic sensory and motor functions), secondary (association areas), and tertiary (higher-order cognition) brain regions. A difference in vulnerability to deterioration was expected between these regions, with especially tertiary regions being affected by age. Higher BBB leakage rate was significantly associated with older age in the white and gray matter, and also in tertiary, but not in primary or secondary brain regions. Even in healthy individuals, BBB disruption was stronger in older persons, which suggests BBB disruption is a normal physiologically aging phenomenon. Age-related increase in BBB disruption occurred especially in brain regions most vulnerable to age-related deterioration, which may indicate that BBB disruption is an underlying mechanism of normal age-related decline.Netherlands Trial Register number: NL6358, date of registration: 2017-03-24.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7394987 | PMC |
http://dx.doi.org/10.1007/s11357-020-00211-2 | DOI Listing |
Front Cell Neurosci
December 2024
Laboratory of Molecular Neurovirology, Faculty of Health Science, University of Brasília, Brasília, Brazil.
The persistence or emergence of long-term symptoms following resolution of primary SARS-CoV-2 infection is referred to as long COVID or post-acute sequelae of COVID-19 (PASC). PASC predominantly affects the cardiovascular, neurological, respiratory, gastrointestinal, reproductive, and immune systems. Among these, the central nervous system (CNS) is significantly impacted, leading to a spectrum of symptoms, including fatigue, headaches, brain fog, cognitive impairment, anosmia, hypogeusia, neuropsychiatric symptoms, and peripheral neuropathy (neuro-PASC).
View Article and Find Full Text PDFEur J Pharmacol
December 2024
School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China. Electronic address:
Stroke is a serious condition with sudden onset, high severity, and significant rates of mortality and disability, ranking as the second leading cause of death globally at 11.6%. Hemorrhagic stroke, characterized by non-traumatic rupture of cerebral vessels, can cause secondary brain injury such as neurotoxicity, inflammation, reactive oxygen species, and blood-brain barrier (BBB) damage.
View Article and Find Full Text PDFSci Rep
December 2024
Cell and Developmental Biology Laboratory, Research and Development Cell, PIMSR, Parul University, Vadodara, Gujarat, 391760, India.
The SARS-CoV-2 virus that resulted in the COVID-19 pandemic has been implicated in a range of neurological issues, such as encephalopathy, stroke, and cognitive decline. Although the precise mechanism causing these issues is unknown, mounting evidence shows that blood-brain barrier (BBB) disruption is probable2 a major factor. The integrity of the blood-brain barrier (BBB), a highly selective barrier that divides the brain from the systemic circulation, is crucial for preserving normal brain function.
View Article and Find Full Text PDFCNS Neurosci Ther
December 2024
Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
Aims: This study investigated the protective role of Annexin A1 (ANXA1) in sepsis-associated encephalopathy (SAE) by examining its effects on brain vascular endothelium and blood-brain barrier (BBB) integrity.
Methods: Mice were divided into four groups: wild type (WT), cecal ligation and puncture (CLP), ANXA1 knockout (ANXA1[-/-]), and ANXA1(-/-) with CLP. Neurobehavioral changes were assessed using the Y-maze test, while BBB integrity was evaluated through Evans blue dye (EBD) staining and permeability tests with fluorescein isothiocyanate (FITC)-dextran.
CPT Pharmacometrics Syst Pharmacol
December 2024
Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA.
Type 2 diabetes mellitus (T2DM), characterized by insulin resistance, is closely associated with Alzheimer's disease (AD). Cerebrovascular dysfunction is manifested in both T2DM and AD, and is often considered as a pathological link between the two diseases. Insulin signaling regulates critical functions of the blood-brain barrier (BBB), and endothelial insulin resistance could lead to BBB dysfunction, aggravating AD pathology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!