The organic linker in a metal organic framework (MOF) affects its adsorption behavior and performance, and its structure and dynamics play a role in the modulation of the adsorption properties. In this work, the combination of H nuclear magnetic resonance (NMR) longitudinal relaxometry and theoretical calculations allowed details of the structure and dynamics of the organic linker in the NH-MIL-125 MOF to be obtained. In particular, fast field cycling (FFC) NMR, applied here for the first time on MOFs, was used to disclose the dynamics of the amino group and its electronic environment through the analysis of the N quadrupole relaxation peaks, observed in the frequency interval 0.5-5 MHz, at different temperatures from 25 to 110 °C. The line width of the peaks allowed a lower boundary on the rotational correlation time of the N-H bonds to be set, whereas relevant changes in the amplitudes were interpreted in terms of a change in the orientation of the N averaged electric field gradient tensor. The experimental findings were complemented by quantum chemistry calculations and classical molecular dynamics simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp01863e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!