Global-scale surface soil moisture products are currently available from multiple remote sensing platforms. Footprint-scale assessments of these products are generally restricted to limited number of densely-instrumented validation sites. However, by taking active and passive soil moisture products together with a third independent soil moisture estimates via land surface modeling, triple collocation (TC) can be applied to estimate the correlation metric of satellite soil moisture products (versus an unknown ground truth) over a quasi-global domain. Here, an assessment of Soil Moisture Active Passive (SMAP), Soil Moisture Ocean Salinity (SMOS) and Advanced SCATterometer (ASCAT) surface soil moisture retrievals via TC is presented. Considering the potential violation of TC error assumptions, the impact of active-passive and satellite-model error cross correlations on the TC-derived inter-comparison results is examined at sites using quadruple collocation analysis. In addition, confidence intervals for the TC-estimated correlation metric are constructed from moving-block bootstrap sampling designed to preserve the temporal persistence of the original (unevenly-sampled) soil moisture time-series. This study is the first to apply TC to obtain a robust global-scale cross-assessment of SMAP, SMOS and ASCAT soil moisture retrieval accuracy in terms of anomaly temporal correlation. Our results confirm the overall advantage of SMAP (with a global average anomaly correlation of 0.76) over SMOS (0.66) and ASCAT (0.63) that has been established in several recent regional, ground-based studies. SMAP is also the best-performing product over the majority of applicable land pixels (52%), although SMOS and ASCAT each shows advantage in distinct geographic regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7323692 | PMC |
http://dx.doi.org/10.1016/j.rse.2018.05.008 | DOI Listing |
Am J Bot
January 2025
Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA.
Premise: The ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant-fungal interactions, especially under environmental stress.
Methods: We tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high).
BMC Plant Biol
January 2025
Department of Soil Science, University of Tehran, Tehran, Iran.
Soil compaction is a pressing issue in agriculture that significantly hinders plant growth and soil health, necessitating effective strategies for mitigation. This study examined the effects of sugarcane bagasse, both in its raw form and as biochar, along with biological activators (Bacillus simplex UTT1 and Phanerochaete chrysosporium) on soil characteristics and corn (Zea mays L.) plant biomass in a compacted soil.
View Article and Find Full Text PDFSci Rep
January 2025
School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, China.
With the advancement of ecological and environmental protection construction, the research on the modification of expansive soil using environmentally friendly polymers can make up for the harm to the ecological environment caused by traditional modification. Mechanical and microscopic properties of modified expansive soils were analyzed through indoor tests. The results showed that the liquid limit and plasticity index decreased by 52.
View Article and Find Full Text PDFSci Total Environ
January 2025
Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China. Electronic address:
The Great Wall in China, constructed from rammed earth, faces threats from natural erosion. Vascular plants and biocrusts have enhanced the stability of the Great Wall through various mechanisms; however, understanding of the colonization processes of vascular plants and biocrusts on the wall, as well as their protective mechanisms, remains limited. This study investigated the vascular plant communities, biocrusts, soil moisture content, soil properties, aggregate mechanical stability, aggregate water stability, and soil erodibility factors across seven fine-scale microtopographies of the Great Wall (lower, middle, and upper zones on the east and west faces, as well as the wall crest).
View Article and Find Full Text PDFSci Total Environ
January 2025
Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise Street. 46, 51003 Tartu, Estonia. Electronic address:
Despite only covering ~3 % of the land mass, peatlands store more carbon (C) per unit area than any other ecosystem. This is due to the discrepancy between C fixed by the plants (Gross primary productivity (GPP)) and decomposition. However, this C is vulnerable to frequent, severe droughts and changes in the peatland microclimate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!