Malaria transmission blocking vaccines (TBV) target the sexual stage of the parasite and have been pursued as a stand-alone vaccine or for combination with pre-erythrocytic or blood stage vaccines. Our efforts to develop TBV focus primarily on two antigens, Pfs25 and Pfs230. Chemical conjugation of these poorly immunogenic antigens to carrier proteins enhances their immunogenicity, and conjugates of these antigens to Exoprotein A (EPA) are currently under evaluation in clinical trials. Nonetheless, more potent carriers may augment the immunogenicity of these antigens for a more efficacious vaccine; here, we evaluate a series of proteins to identify such a carrier. Pfs25 and Pfs230 were chemically conjugated to 4 different carriers [tetanus toxoid (TT), a recombinant fragment of tetanus toxin heavy chain (rTThc), recombinant CRM produced in Pseudomonas fluorescens (CRM197) or in E. coli (EcoCRM®)] and compared to EPA conjugates in mouse immunogenicity studies. Conjugates of each antigen formulated in Alhydrogel® elicited similar antibody titers but showed differences in functional activity. At a 0.5 µg dose, Pfs230 conjugated to TT, CRM197 and EcoCRM® showed significantly higher functional activity compared to EPA. When formulated with the more potent adjuvant GLA-LSQ, all 4 alternate conjugates induced higher antibody titers as well as increased functional activity compared to the EPA conjugate. IgG subclass analysis of Pfs230 conjugates showed no carrier-dependent differences in the IgG profile. While Alhydrogel® formulations induced a Th2 dominant immune response, GLA-LSQ formulations induced a mixed Th1/Th2 response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11127250 | PMC |
http://dx.doi.org/10.1016/j.vaccine.2020.06.018 | DOI Listing |
EBioMedicine
August 2024
Department of Biological Sciences, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, USA. Electronic address:
Background: A highly effective vaccine for malaria remains an elusive target, at least in part due to the under-appreciated natural parasite variation. This study aimed to investigate genetic and structural variation, and immune selection of leading malaria vaccine candidates across the Plasmodium falciparum's life cycle.
Methods: We analysed 325 P.
medRxiv
May 2024
Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA.
Background: A highly effective vaccine for malaria remains an elusive target, at least in part due to the under-appreciated natural parasite variation. This study aimed to investigate genetic and structural variation, and immune selection of leading malaria vaccine candidates across the 's life cycle.
Methods: We analyzed 325 whole genome sequences from Zambia, in addition to 791 genomes from five other African countries available in the MalariaGEN Pf3k Rdatabase.
NPJ Vaccines
January 2024
Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Bethesda, 29 Lincoln Drive, Building 29B, MD, 20892-2903, USA.
Malaria transmission-blocking vaccines (TBV) are designed to inhibit the sexual stage development of the parasite in the mosquito host and can play a significant role in achieving the goal of malaria elimination. Preclinical and clinical studies using protein-protein conjugates of leading TBV antigens Pfs25 and Pfs230 domain 1 (Pfs230D1) have demonstrated the feasibility of TBV. Nevertheless, other promising vaccine platforms for TBV remain underexplored.
View Article and Find Full Text PDFVaccine
May 2023
Department of Biology, Loyola University Chicago, 1032 W Sheridan Rd, Chicago, IL 60660, USA; Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD, 20814, USA. Electronic address:
Recent work demonstrating that asymptomatic carriers of P. falciparum parasites make up a large part of the infectious reservoir highlights the need for an effective malaria vaccine. Given the historical challenges of vaccine development, multiple parasite stages have been targeted, including the sexual stages required for transmission.
View Article and Find Full Text PDFAm J Trop Med Hyg
July 2022
Among the Plasmodium falciparum surface antigens reported by Richard Carter and his colleagues decades ago, Pfs230 is currently the target of the most advanced candidate for a malaria transmission-blocking vaccine. First identified by its orthologue in the avian malaria parasite Plasmodium gallinaceum, the large cysteine-rich 14-domain Pfs230 antigen is displayed on the surface of gametes that emerge in the mosquito midgut. Gametes lacking Pfs230 cannot bind to red blood cells nor develop further into oocysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!